test_that("tuning with multiple objectives", { task = tsk("pima") resampling = rsmp("holdout") learner = lrn("classif.rpart") measure_ids = c("classif.fpr", "classif.tpr") measures = msrs(measure_ids) tune_ps = ps( cp = p_dbl(lower = 0.001, upper = 0.1), minsplit = p_int(lower = 1, upper = 10) ) terminator = trm("evals", n_evals = 10) tuner = tnr("random_search") inst = TuningInstanceBatchMultiCrit$new(task, learner, resampling, measures, terminator, tune_ps) tuner$optimize(inst) sp = inst$result_x_search_space obj = inst$result_y expect_names(names(sp), identical.to = tune_ps$ids()) expect_data_table(sp, min.rows = 1, ncols = length(measures)) expect_names(names(obj), identical.to = measure_ids) expect_data_table(inst$archive$data, nrows = 10L) expect_equal(inst$archive$cols_y, measure_ids) expect_data_table(inst$archive$best()) expect_list(inst$result_x_domain) }) test_that("store_benchmark_result and store_models flag works", { inst = TEST_MAKE_INST1_2D(store_benchmark_result = FALSE) inst$eval_batch(data.table(cp = c(0.3, 0.25), minsplit = c(3, 4))) expect_true("uhashes" %nin% colnames(inst$archive$data)) inst = TEST_MAKE_INST1_2D(store_benchmark_result = TRUE) inst$eval_batch(data.table(cp = c(0.3, 0.25), minsplit = c(3, 4))) expect_r6(inst$archive$benchmark_result, "BenchmarkResult") inst = TEST_MAKE_INST1_2D(store_benchmark_result = TRUE, store_models = FALSE) inst$eval_batch(data.table(cp = c(0.3, 0.25), minsplit = c(3, 4))) expect_null(inst$archive$benchmark_result$resample_result(1)$learners[[1]]$model) inst = TEST_MAKE_INST1_2D(store_benchmark_result = TRUE, store_models = TRUE) inst$eval_batch(data.table(cp = c(0.3, 0.25), minsplit = c(3, 4))) expect_class(inst$archive$benchmark_result$resample_result(1)$learners[[1]]$model, "rpart") }) test_that("check_values flag with parameter set dependencies", { learner = LearnerRegrDepParams$new() learner$param_set$values$xx = "a" search_space = ps( cp = p_dbl(lower = 0.1, upper = 0.3), yy = p_dbl(lower = 0.1, upper = 0.3) ) terminator = trm("evals", n_evals = 20) tuner = tnr("random_search") inst = TuningInstanceBatchMultiCrit$new( tsk("boston_housing"), learner, rsmp("holdout"), msrs(c("regr.mse", "regr.rmse")), terminator, search_space, check_values = FALSE) tuner$optimize(inst) expect_named(inst$result_learner_param_vals[[1]], c("xx", "cp", "yy")) inst = TuningInstanceBatchMultiCrit$new(tsk("boston_housing"), learner, rsmp("holdout"), msr("regr.mse"), terminator, search_space, check_values = TRUE) expect_error(tuner$optimize(inst), regexp = "yy.* can only be set") }) test_that("search space from TuneToken works", { learner = lrn("classif.rpart") learner$param_set$values$cp = to_tune(0.1, 0.3) instance = TuningInstanceBatchMultiCrit$new(task = tsk("iris"), learner = learner, resampling = rsmp("holdout"), measures = msrs(c("classif.acc", "classif.ce")), terminator = trm("evals", n_evals = 1)) expect_r6(instance$search_space, "ParamSet") expect_equal(instance$search_space$ids(), "cp") ps = ps( cp = p_dbl(lower = 0.1, upper = 0.3) ) expect_error(TuningInstanceBatchMultiCrit$new(task = tsk("iris"), learner = learner, resampling = rsmp("holdout"), measures = msrs(c("classif.acc", "classif.ce")), search_space = ps, terminator = trm("evals", n_evals = 1)), regexp = "If the values of the ParamSet of the Learner contain TuneTokens you cannot supply a search_space.", fixed = TRUE) instance = TuningInstanceBatchMultiCrit$new(task = tsk("iris"), learner = lrn("classif.rpart"), resampling = rsmp("holdout"), measures = msrs(c("classif.acc", "classif.ce")), search_space = ps, terminator = trm("evals", n_evals = 1)) expect_r6(instance$search_space, "ParamSet") expect_equal(instance$search_space$ids(), "cp") }) test_that("TuneToken and result_learner_param_vals works", { learner = lrn("classif.rpart", xval = 0) learner$param_set$values$cp = to_tune(0.1, 0.3) instance = TuningInstanceBatchMultiCrit$new(task = tsk("iris"), learner = learner, resampling = rsmp("holdout"), measures = msrs(c("classif.ce", "classif.acc")), terminator = trm("evals", n_evals = 1)) xdt = data.table(cp = 0.1) tuner = tnr("design_points", design = xdt) tuner$optimize(instance) expect_equal(instance$result_learner_param_vals[[1]]$xval, 0) expect_equal(instance$result_learner_param_vals[[1]]$cp, 0.1) }) test_that("TuningInstanceBatchMultiCrit and empty search space works", { # xval constant instance = tune( tuner = tnr("random_search", batch_size = 5), task = tsk("pima"), learner = lrn("classif.rpart"), resampling = rsmp("cv", folds = 3), measures = msrs(c("classif.ce", "classif.acc")), term_evals = 10 ) expect_data_table(instance$result) expect_equal(instance$result$learner_param_vals[[1]], list(xval = 0)) expect_equal(instance$result$x_domain[[1]], list()) # xval and cp constant instance = tune( tuner = tnr("random_search", batch_size = 5), task = tsk("pima"), learner = lrn("classif.rpart", xval = 0, cp = 0.1), resampling = rsmp("cv", folds = 3), measures = msrs(c("classif.ce", "classif.acc")), term_evals = 10 ) expect_data_table(instance$result) expect_equal(sortnames(instance$result$learner_param_vals[[1]]), list(xval = 0, cp = 0.1)) expect_equal(instance$result$x_domain[[1]], list()) # no constant learner = lrn("classif.rpart") learner$param_set$values$xval = NULL instance = tune( tuner = tnr("random_search", batch_size = 5), task = tsk("pima"), learner = learner, resampling = rsmp("cv", folds = 3), measures = msrs(c("classif.ce", "classif.acc")), term_evals = 10 ) expect_data_table(instance$result) expect_equal(instance$result$learner_param_vals[[1]], list()) expect_equal(instance$result$x_domain[[1]], list()) }) test_that("assign_result works", { learner = lrn("classif.rpart", cp = to_tune(0.01, 0.1)) task = tsk("pima") resampling = rsmp("holdout") measures = msrs(c("classif.fpr", "classif.tpr")) terminator = trm("evals", n_evals = 10) instance = TuningInstanceBatchMultiCrit$new(task, learner, resampling, measures, terminator) xdt = data.table(cp = c(0.1, 0.01)) ydt = data.table(classif.fpr = c(0.8, 0.7), classif.tpr = c(0.3, 0.2)) instance$assign_result(xdt, ydt) res = instance$result expect_data_table(res, nrows = 2) expect_equal(res$cp, c(0.1, 0.01)) expect_equal(res$classif.fpr, c(0.8, 0.7)) expect_equal(res$classif.tpr, c(0.3, 0.2)) expect_equal(sortnames(res$learner_param_vals[[1]]), list(xval = 0, cp = 0.1)) })