# expect that 'one' is a deep clone of 'two' expect_deep_clone = function(one, two) { # is equal expect_equal(one, two) visited = new.env() visited_b = new.env() expect_references_differ = function(a, b, path) { force(path) if (length(path) > 400) { stop("Recursion too deep in expect_deep_clone()") } # don't go in circles addr_a = data.table::address(a) addr_b = data.table::address(b) if (!is.null(visited[[addr_a]])) { return(invisible(NULL)) } visited[[addr_a]] = path visited_b[[addr_b]] = path # follow attributes, even for non-recursive objects if (utils::tail(path, 1) != "[attributes]" && !is.null(base::attributes(a))) { expect_references_differ(base::attributes(a), base::attributes(b), c(path, "[attributes]")) } # don't recurse if there is nowhere to go if (!base::is.recursive(a)) { return(invisible(NULL)) } # check that environments differ if (base::is.environment(a)) { # some special environments if (identical(a, baseenv()) || identical(a, globalenv()) || identical(a, emptyenv())) { return(invisible(NULL)) } if (length(path) > 1 && R6::is.R6(a) && "clone" %nin% names(a)) { return(invisible(NULL)) # don't check if smth is not cloneable } if (identical(utils::tail(path, 1), c("[element train_task] 'train_task'"))) { return(invisible(NULL)) # workaround for https://github.com/mlr-org/mlr3/issues/382 } if (identical(utils::tail(path, 1), c("[element fallback] 'fallback'"))) { return(invisible(NULL)) # workaround for https://github.com/mlr-org/mlr3/issues/511 } label = sprintf("Object addresses differ at path %s", paste0(path, collapse = "->")) expect_true(addr_a != addr_b, label = label) expect_null(visited_b[[addr_a]], label = label) } else { a <- unclass(a) b <- unclass(b) } # recurse if (base::is.function(a)) { return(invisible(NULL)) ## # maybe this is overdoing it ## expect_references_differ(base::formals(a), base::formals(b), c(path, "[function args]")) ## expect_references_differ(base::body(a), base::body(b), c(path, "[function body]")) } objnames = base::names(a) if (is.null(objnames) || anyDuplicated(objnames)) { index = seq_len(base::length(a)) } else { index = objnames if (base::is.environment(a)) { index = Filter(function(x) !bindingIsActive(x, a), index) } } for (i in index) { if (utils::tail(path, 1) == "[attributes]" && i %in% c("srcref", "srcfile", ".Environment")) next expect_references_differ(base::`[[`(a, i), base::`[[`(b, i), c(path, sprintf("[element %s]%s", i, if (!is.null(objnames)) sprintf(" '%s'", if (is.character(index)) i else objnames[[i]]) else ""))) } } expect_references_differ(one, two, "ROOT") } expect_shallow_clone = function(one, two) { expect_equal(one, two) if (base::is.environment(one)) { addr_a = data.table::address(one) addr_b = data.table::address(two) expect_true(addr_a != addr_b, label = "Objects are shallow clones") } } # check basic properties of a pipeop object # - properties / methods as we need them expect_pipeop = function(po, check_ps_default_values = TRUE) { label = sprintf("pipeop '%s'", po$id) expect_class(po, "PipeOp", label = label) expect_string(po$id, label = label) expect_class(po$param_set, "ParamSet", label = label) expect_list(po$param_set$values, names = "unique", label = label) expect_flag(po$is_trained, label = label) expect_output(print(po), "PipeOp:", label = label) expect_character(po$packages, any.missing = FALSE, unique = TRUE, label = label) expect_function(po$train, nargs = 1) expect_function(po$predict, nargs = 1) expect_data_table(po$input, any.missing = FALSE) expect_names(names(po$input), permutation.of = c("name", "train", "predict")) expect_data_table(po$output, any.missing = FALSE) expect_names(names(po$output), permutation.of = c("name", "train", "predict")) expect_int(po$innum, lower = 1) expect_int(po$outnum, lower = 1) expect_valid_pipeop_param_set(po, check_ps_default_values = check_ps_default_values) } # autotest for the parmset of a pipeop # - at least one of "train" or "predict" must be in every parameter's tag # - custom_checks of ParamUty return string on failure # - either default or values are set; if both, they differ (only if check_ps_default_values = TRUE) expect_valid_pipeop_param_set = function(po, check_ps_default_values = TRUE) { ps = po$param_set expect_true(every(ps$tags, function(x) length(intersect(c("train", "predict"), x)) > 0L)) if (mlr3pipelines:::paradox_info$is_old) { uties = ps$params[ps$ids("ParamUty")] if (length(uties)) { test_value = NO_DEF # custom_checks should fail for NO_DEF results = map(uties, function(uty) { uty$custom_check(test_value) }) expect_true(all(map_lgl(results, function(result) { length(result) == 1L && (is.character(result) || result == TRUE) # result == TRUE is necessary because default is function(x) TRUE })), label = "custom_check returns string on failure") } } else { uties = ps$ids("ParamUty") if (length(uties)) { test_value = NO_DEF # custom_checks should fail for NO_DEF results = map(uties, function(uty) { psn = ps$subset(uty, allow_dangling_dependencies = TRUE) psn$check(structure(list(test_value), names = uty)) }) expect_true(all(map_lgl(results, function(result) { length(result) == 1L && (is.character(result) || result == TRUE) # result == TRUE is necessary because default is function(x) TRUE })), label = "custom_check returns string on failure") } } if (check_ps_default_values) { default = ps$default values = ps$values default_and_values = intersect(names(default), names(values)) if (length(default_and_values)) { expect_true(all(pmap_lgl(list(default[default_and_values], values[default_and_values]), function(default, value) { !identical(default, value) })), label = "ParamSet default and values differ") } } } # Thoroughly check that do.call(poclass$new, constargs) creates a pipeop # - basic properties check (expect_pipeop) # - deep clone works # - *_internal checks for classes # - *_internal handles NO_OP as it should expect_pipeop_class = function(poclass, constargs = list(), check_ps_default_values = TRUE) { skip_on_cran() po = do.call(poclass$new, constargs) expect_pipeop(po, check_ps_default_values = check_ps_default_values) poclone = po$clone(deep = TRUE) expect_deep_clone(po, poclone) in_nop = rep(list(NO_OP), po$innum) in_nonnop = rep(list(NULL), po$innum) out_nop = rep(list(NO_OP), po$outnum) names(out_nop) = po$output$name expect_false(po$is_trained) expect_equal(po$train(in_nop), out_nop) expect_equal(po$predict(in_nop), out_nop) expect_true(is_noop(po$state)) expect_true(po$is_trained) expect_error(po$predict(in_nonnop), "Pipeop .* got NO_OP during train") # check again with no_op-trained PO expect_pipeop(po, check_ps_default_values = check_ps_default_values) poclone = po$clone(deep = TRUE) expect_deep_clone(po, poclone) } # check that a do.call(poclass$new, constargs) behaves as a preprocessing pipeop should. # This entails # - expect_pipeop_class # - input / output both have length 1, type "Task" or a subclass # - training on non-task gives error # - predicting on non-task gives error # - training twice gives the same result (if `deterministic_train`) # - predicting twice gives the same result (if `deterministic_predict`) # - train and predict with provided task gives the same prediction (if `predict_like_train` and `deterministic_predict`) # - prediction on row-subset is row-subset of prediction (if `deterministic_predict` and `predict_row_independent`) # - predicting on task that has different column layout than training gives an error # - training on task with no columns returns task with no columns # - training on task when affect_columns is FALSE does not change task # - predicting on task with no columns returns task with no columns (if training happened on the same) # - predicting on task with no rows returns task with no rows (if predict_rows_independent) # - predicting without target column works # - predicting without target column gives the same result as with target column (if `deterministic_predict`) # - training / prediction does not change input task # - is_trained is true # - deep cloning clones the state # # `task` must have at least two feature columns and at least two rows. expect_datapreproc_pipeop_class = function(poclass, constargs = list(), task, predict_like_train = TRUE, predict_rows_independent = TRUE, deterministic_train = TRUE, deterministic_predict = TRUE, affect_context_independent = TRUE, # whether excluding a column does not change what happens to the other columns tolerance = sqrt(.Machine$double.eps), check_ps_default_values = TRUE) { # NOTE # The 'tolerance' parameter is not used in many places yet; if tolerance becomes a problem, add the # 'tolerance = tolerance' argument to `expect_equal`. original_clone = task$clone(deep = TRUE) expect_shallow_clone(task, original_clone) expect_pipeop_class(poclass, constargs, check_ps_default_values = check_ps_default_values) po = do.call(poclass$new, constargs) po2 = do.call(poclass$new, constargs) expect_equal(po$innum, 1) expect_equal(po$outnum, 1) expect_true(are_types_compatible(po$input$train, "Task")) expect_true(are_types_compatible(po$input$predict, "Task")) expect_true(are_types_compatible(po$output$train, "Task")) expect_true(are_types_compatible(po$output$predict, "Task")) expect_error(po$train(list(NULL)), "class.*Task.*but has class") expect_false(po$is_trained) trained = po$train(list(task)) trained2 = po$train(list(task)) trained3 = po2$train(list(task)) expect_list(trained, types = "Task", any.missing = FALSE, len = 1) expect_list(trained2, types = "Task", any.missing = FALSE, len = 1) expect_list(trained3, types = "Task", any.missing = FALSE, len = 1) trained = trained[[1]] trained2 = trained2[[1]] trained3 = trained3[[1]] expect_task(trained) expect_task(trained2) expect_task(trained3) if (deterministic_train) { expect_equal(trained$data(), trained2$data()) expect_equal(trained$data(), trained3$data()) } expect_true(po$is_trained) expect_deep_clone(po, po$clone(deep = TRUE)) expect_error(po$predict(list(NULL)), "class.*Task.*but has class") predicted = po$predict(list(task)) predicted2 = po$predict(list(task)) predicted3 = po2$predict(list(task)) expect_list(predicted, types = "Task", any.missing = FALSE, len = 1) expect_list(predicted2, types = "Task", any.missing = FALSE, len = 1) expect_list(predicted3, types = "Task", any.missing = FALSE, len = 1) predicted = predicted[[1]] predicted2 = predicted2[[1]] predicted3 = predicted3[[1]] expect_task(predicted) expect_task(predicted2) expect_task(predicted3) if (deterministic_predict) { expect_equal(predicted$data(), predicted2$data()) if (deterministic_train) { # need to be deterministic_train here. # consider the case where train() creates a random `$state` but # predict() is deterministic given that state. expect_equal(predicted$data(), predicted3$data()) } if (predict_like_train) { # if deterministic_train is FALSE then `trained` may be different from `predicted`! expect_equal(trained2$data(), predicted2$data(), ignore.col.order = TRUE, tolerance = tolerance) expect_equal(trained3$data(), predicted3$data(), ignore.col.order = TRUE, tolerance = tolerance) } } if (predict_rows_independent) { expect_equal(predicted$nrow, task$nrow) } task2 = task$clone(deep = TRUE) task2$select(task2$feature_names[-1]) expect_error(po$predict(list(task2)), "Input task during prediction .* does not match input task during training") emptytask = task$clone(deep = TRUE)$select(character(0)) expect_task(po$train(list(emptytask))[[1]]) emptytaskfnames = po$train(list(emptytask))[[1]]$feature_names expect_task(po$predict(list(emptytask))[[1]]) expect_equal(emptytaskfnames, po$predict(list(emptytask))[[1]]$feature_names) if ("affect_columns" %in% po$param_set$ids() && affect_context_independent) { selector = function(data) data$feature_names[-1] po2$param_set$values$affect_columns = selector trained.subset = po$train(list(task2))[[1]] trained2.subset = po2$train(list(task))[[1]] if (deterministic_train) { expect_equal(trained.subset$data(cols = c(trained.subset$target_names, trained.subset$feature_names)), trained2.subset$data(cols = setdiff(c(trained2.subset$target_names, trained2.subset$feature_names), task$feature_names[1]))) } predicted.subset = po$predict(list(task2))[[1]] predicted2.subset = po2$predict(list(task2))[[1]] if (deterministic_train && deterministic_predict) { expect_equal(predicted.subset$data(), predicted2.subset$data()) } predicted2.subset2 = po2$predict(list(task))[[1]] if (deterministic_predict) { expect_equal(predicted2.subset$data(cols = c(predicted.subset$target_names, predicted.subset$feature_names)), predicted2.subset2$data(cols = setdiff(c(predicted2.subset2$target_names, predicted2.subset2$feature_names), task$feature_names[1]))) } selector = function(data) character(0) po2$param_set$values$affect_columns = selector # NOTE: the following should ensure that data has not changed # but at least one pipeop adds a new column even with 0 affect_cols, so we only check that original task's features have not changed. trained = po2$train(list(task))[[1]] expect_equal(trained$data(cols = task$feature_names), task$data(cols = task$feature_names), ignore.col.order = TRUE, tolerance = tolerance) predicted = po2$predict(list(task))[[1]] expect_equal(predicted$data(cols = task$feature_names), task$data(cols = task$feature_names), ignore.col.order = TRUE, tolerance = tolerance) predicted2 = po2$predict(list(emptytask))[[1]] expect_equal(sort(predicted2$feature_names), sort(emptytaskfnames)) # test affect_columns po_orig = po$clone(deep = TRUE) # selecting no columns leaves task unchanged po$param_set$values$affect_columns = selector_none() expect_equal(task$data(), po$train(list(task))[[1]]$data(cols = colnames(task$data()))) expect_equal(task$data(), po$predict(list(task))[[1]]$data(cols = colnames(task$data()))) # names of every second task column halftasknames = task$feature_names[c(TRUE, FALSE)] # PO has affect_columns set to every other task column po$param_set$values$affect_columns = selector_name(halftasknames) halftrainres = po$train(list(task))[[1]]$data() halfpredres = po$predict(list(task))[[1]]$data() halfpredresL1 = po$predict(list(task$clone()$filter(task$row_ids[1])))[[1]]$data() halfpredresL0 = po$predict(list(task$clone()$filter(task$row_ids[0])))[[1]]$data() # for comparison, we run PO on a task with half the features missing and re-construct the result afterwards halftask = task$clone()$select(halftasknames) otherhalf = task$clone()$data(cols = setdiff(task$feature_names, halftasknames)) explicittrainres = cbind(po_orig$train(list(halftask))[[1]]$data(), otherhalf) explicitpredres = cbind(po_orig$predict(list(halftask))[[1]]$data(), otherhalf) explicitpredresL1 = cbind(po_orig$predict(list(halftask$clone()$filter(task$row_ids[1])))[[1]]$data(), otherhalf[1, ]) explicitpredresL0 = cbind(po_orig$predict(list(halftask$clone()$filter(task$row_ids[0])))[[1]]$data(), otherhalf[integer(0), ]) if (deterministic_train) { expect_equal(halftrainres, explicittrainres, ignore.col.order = TRUE, tolerance = tolerance) } if (deterministic_predict) { if (deterministic_train) { expect_equal(halfpredres, explicitpredres, ignore.col.order = TRUE, tolerance = tolerance) expect_equal(halfpredresL1, explicitpredresL1, ignore.col.order = TRUE, tolerance = tolerance) } expect_equal(halfpredresL1, halfpredres[1, ], ignore.col.order = TRUE, tolerance = tolerance) if (predict_like_train) { expect_equal(halfpredres, halftrainres, ignore.col.order = TRUE, tolerance = tolerance) expect_equal(explicitpredres, explicittrainres, ignore.col.order = TRUE, tolerance = tolerance) } } expect_equal(halfpredresL0, explicitpredresL0, ignore.col.order = TRUE, tolerance = tolerance) expect_equal(halfpredresL0, halfpredres[integer(0), ], ignore.col.order = TRUE, tolerance = tolerance) } po$train(list(task)) norowtask = task$clone(deep = TRUE)$filter(integer(0)) whichrow = task$row_ids[[sample.int(task$nrow, 1)]] onerowtask = task$clone(deep = TRUE)$filter(whichrow) predicted = po$predict(list(norowtask))[[1]] if (predict_rows_independent) { expect_equal(predicted$nrow, 0) } predicted = po$predict(list(onerowtask))[[1]] if (predict_rows_independent) { expect_equal(predicted$nrow, 1) if (deterministic_predict) { expect_equal(predicted$data(), po$predict(list(task))[[1]]$filter(whichrow)$data(), ignore.col.order = TRUE, tolerance = tolerance) } } if (packageVersion("mlr3") >= "0.1.3-9001") { y = task$data(cols = task$target_names, rows = shuffle(task$row_ids)) permutated = task$clone(deep = TRUE)$cbind(y) po$train(list(task)) predicted = po$predict(list(task))[[1]] predicted.permutated = po$predict(list(permutated))[[1]] if (deterministic_predict) { expect_equal(predicted$data(cols = predicted$feature_names), predicted.permutated$data(cols = predicted.permutated$feature_names)) } } expect_shallow_clone(task, original_clone) # test that task was not changed by all the training / prediction } train_pipeop = function(po, inputs) { label = sprintf("pipeop '%s'", po$id) expect_pipeop(po, check_ps_default_values = FALSE) expect_null(po$state, label = label) expect_false(po$is_trained, label = label) result = po$train(inputs) expect_list(result, len = po$outnum, label = label) expect_true(!is.null(po$state), label = label) expect_true(po$is_trained, label = label) expect_pipeop(po, check_ps_default_values = FALSE) return(result) } predict_pipeop = function(po, inputs) { expect_pipeop(po, check_ps_default_values = FALSE) expect_true(po$is_trained) result = po$predict(inputs) expect_list(result, len = po$outnum) expect_pipeop(po, check_ps_default_values = FALSE) return(result) } # check that features of task change according to # compares po$train(list(traintask))[[1]] result with trainresult, and # (if given), po$predict(list(predicttask))[[1]] with predictresult. # -- This only checks feature columns -- expect_pipeop_result_features = function(po, traintask, trainresult, predicttask = NULL, predictresult = NULL) { result = train_pipeop(po, list(traintask)) expect_equal(result$data(cols = result$feature_names), trainresult, ignore.col.order = TRUE, tolerance = tolerance) assert(is.null(predicttask) == is.null(predictresult)) if (!is.null(predicttask)) { result = predict_pipeop(po, list(traintask)) expect_equal(result$data(cols = result$feature_names), predicttask, ignore.col.order = TRUE, tolerance = tolerance) } } expect_graph = function(g, n_nodes = NULL, n_edges = NULL) { expect_class(g, "Graph") expect_list(g$pipeops, "PipeOp") if (!is.null(n_nodes)) { expect_length(g$pipeops, n_nodes) } expect_character(g$packages, any.missing = FALSE, unique = TRUE) expect_data_table(g$edges, any.missing = FALSE) if (!is.null(n_edges)) { expect_equal(nrow(g$edges), n_edges) } expect_character(g$hash) expect_class(g$param_set, "ParamSet") expect_list(g$param_set$values, names = "unique") expect_character(g$lhs, any.missing = FALSE) expect_character(g$rhs, any.missing = FALSE) expect_set_equal(g$ids(), names(g$pipeops)) expect_set_equal(g$ids(sorted = TRUE), names(g$pipeops)) expect_flag(g$is_trained) } make_prediction_obj_classif = function(n = 100, noise = TRUE, predict_types = "response", seed = 1444L, nclasses = 3L) { if (!noise) set.seed(seed) response = prob = NULL lvls = letters[seq_len(nclasses)] truth = sample(lvls, n, replace = TRUE) if ("prob" %in% predict_types) { prob = matrix(runif(n * nclasses), ncol = nclasses, nrow = n) prob = t(apply(prob, 1, function(x) x / sum(x))) colnames(prob) = lvls response = colnames(prob)[max.col(prob, ties.method = "first")] } else if ("response" %in% predict_types) { response = sample(letters[seq_len(nclasses)], n, replace = TRUE) } PredictionClassif$new(row_ids = seq_len(n), truth = factor(truth, levels = lvls), response = factor(response, levels = lvls), prob = prob) } PipeOpLrnRP = PipeOpLearner$new(mlr_learners$get("classif.rpart")) PipeOpLrnFL = PipeOpLearner$new(mlr_learners$get("classif.featureless")) # turn data.table of character into comma-separated rows, so they can # be checked easily with expect_equal and expect_set_equal csvify = function(table) { apply(table, 1, paste, collapse = ",") } # canonicise param_set by calling the active binding touch = function(x) { x$param_set x } expect_multiplicity = function(x) { expect_true(is.Multiplicity(x)) } # the following is a necessary workaround for the new R misbehaving when comparing R6 objects. # See https://github.com/r-lib/R6/issues/208 # This is quite sloppy right now. r6_to_list = function(x) { actives = c(".__enclos_env__", names(x[[".__enclos_env__"]][[".__active__"]])) ll = sapply(setdiff(names(x), actives), get, x, simplify = FALSE) ll[[".__enclos_env__"]] = list(`.__active__` = x[[".__enclos_env__"]][[".__active__"]], private = x[[".__enclos_env__"]][["private"]]) if (!is.null(x[[".__enclos_env__"]][["super"]])) { ll[[".__enclos_env__"]][["super"]] = r6_to_list(x[[".__enclos_env__"]][["super"]]) } ln = names(ll) attributes(ll) = attributes(x) names(ll) = ln ll[sort(names(ll))] } all.equal.R6 = function(target, current, ...) { if (!is.environment(target)) NextMethod() if (!is.environment(current)) NextMethod() if (!inherits(current, "R6")) return("'current' is not an R6 class") # avoid cycles r6_seen = dynGet("__r6_seen__", NULL) if (is.null(r6_seen)) { r6_seen = "__r6_seen__" = new.env(parent = emptyenv()) } tca = sprintf("%s__%s", data.table::address(target), data.table::address(current)) if (!is.null(r6_seen[[tca]])) return(TRUE) r6_seen[[tca]] = TRUE # call all.equal.list directly because objects still have R6 class base:::all.equal.list(r6_to_list(target), r6_to_list(current), ...) } registerS3method("all.equal", "R6", all.equal.R6)