test_that("SurrogateLearnerCollection API works", { inst = MAKE_INST(OBJ_1D_2, PS_1D, trm("evals", n_evals = 5L)) design = MAKE_DESIGN(inst) inst$eval_batch(design) surrogate = SurrogateLearnerCollection$new(learners = list(REGR_FEATURELESS, REGR_FEATURELESS$clone(deep = TRUE)), archive = inst$archive) expect_r6(surrogate$archive, "Archive") expect_equal(surrogate$cols_x, "x") expect_equal(surrogate$cols_y, c("y1", "y2")) surrogate$update() expect_learner(surrogate$learner[[1L]]) expect_learner(surrogate$learner[[2L]]) xdt = data.table(x = seq(-1, 1, length.out = 5L)) pred = surrogate$predict(xdt) expect_list(pred, len = 2L) expect_data_table(pred[[1L]], col.names = "named", nrows = 5L, ncols = 2L, any.missing = FALSE) expect_data_table(pred[[2L]], col.names = "named", nrows = 5L, ncols = 2L, any.missing = FALSE) expect_named(pred[[1L]], c("mean", "se")) expect_named(pred[[2L]], c("mean", "se")) # upgrading error class works surrogate = SurrogateLearnerCollection$new(learners = list(LearnerRegrError$new(), LearnerRegrError$new()), archive = inst$archive) expect_error(surrogate$update(), class = "surrogate_update_error") surrogate$param_set$values$catch_errors = FALSE expect_error(surrogate$optimize(), class = "simpleError") # predict_type expect_equal(surrogate$predict_type, surrogate$learner[[1L]]$predict_type) expect_equal(surrogate$predict_type, surrogate$learner[[2L]]$predict_type) surrogate$learner[[1L]]$predict_type = "response" expect_error({surrogate$predict_type}, "Learners have different active predict types") surrogate$learner[[2L]]$predict_type = "response" expect_equal(surrogate$predict_type, surrogate$learner[[1L]]$predict_type) expect_equal(surrogate$predict_type, surrogate$learner[[2L]]$predict_type) expect_error({surrogate$predict_type = "response"}, "is read-only") }) test_that("predict_types are recognized", { skip_if_not_installed("rpart") inst = MAKE_INST(OBJ_1D_2, PS_1D, trm("evals", n_evals = 5L)) design = MAKE_DESIGN(inst) inst$eval_batch(design) learner1 = REGR_FEATURELESS$clone(deep = TRUE) learner1$predict_type = "se" learner2 = lrn("regr.rpart") learner2$predict_type = "response" surrogate = SurrogateLearnerCollection$new(learner = list(learner1, learner2), archive = inst$archive) surrogate$update() xdt = data.table(x = seq(-1, 1, length.out = 5L)) pred = surrogate$predict(xdt) expect_named(pred[[1L]], c("mean", "se")) expect_named(pred[[2L]], "mean") }) test_that("param_set", { inst = MAKE_INST(OBJ_1D_2, PS_1D, trm("evals", n_evals = 5L)) surrogate = SurrogateLearnerCollection$new(learner = list(REGR_FEATURELESS, REGR_FEATURELESS$clone(deep = TRUE)), archive = inst$archive) expect_r6(surrogate$param_set, "ParamSet") expect_setequal(surrogate$param_set$ids(), c("assert_insample_perf", "perf_measures", "perf_thresholds", "catch_errors", "impute_method")) expect_equal(surrogate$param_set$class[["assert_insample_perf"]], "ParamLgl") expect_equal(surrogate$param_set$class[["perf_measures"]], "ParamUty") expect_equal(surrogate$param_set$class[["perf_thresholds"]], "ParamUty") expect_equal(surrogate$param_set$class[["catch_errors"]], "ParamLgl") expect_equal(surrogate$param_set$class[["impute_method"]], "ParamFct") expect_error({surrogate$param_set = list()}, regexp = "param_set is read-only.") }) test_that("insample_perf", { skip_if_not_installed("mlr3learners") skip_if_not_installed("DiceKriging") skip_if_not_installed("rgenoud") inst = MAKE_INST(OBJ_1D_2, PS_1D, trm("evals", n_evals = 5L)) design = MAKE_DESIGN(inst) inst$eval_batch(design) surrogate = SurrogateLearnerCollection$new(learner = list(REGR_KM_DETERM, REGR_KM_DETERM$clone(deep = TRUE)), archive = inst$archive) expect_error({surrogate$insample_perf = c(0, 0)}, regexp = "insample_perf is read-only.") expect_error({surrogate$assert_insample_perf = 0}, regexp = "assert_insample_perf is read-only.") surrogate$update() expect_equal(surrogate$insample_perf, NaN) surrogate$param_set$values$assert_insample_perf = TRUE surrogate$param_set$values$perf_thresholds = c(0.5, 0.5) surrogate$param_set$values$perf_measures = list(mlr_measures$get("regr.rsq"), mlr_measures$get("regr.rsq")) surrogate$update() expect_double(surrogate$insample_perf, lower = -Inf, upper = 1, any.missing = FALSE, len = 2L) expect_equal(names(surrogate$insample_perf), map_chr(surrogate$param_set$values$perf_measures, "id")) surrogate_constant = SurrogateLearnerCollection$new(learner = list(REGR_FEATURELESS, REGR_FEATURELESS$clone(deep = TRUE)), archive = inst$archive) surrogate_constant$param_set$values$assert_insample_perf = TRUE surrogate_constant$param_set$values$perf_thresholds = c(0.5, 0.5) surrogate_constant$param_set$values$perf_measures = list(mlr_measures$get("regr.rsq"), mlr_measures$get("regr.rsq")) expect_error(surrogate_constant$update(), regexp = "Current insample performance of the Surrogate Model does not meet the performance threshold") expect_double(surrogate_constant$insample_perf, lower = -Inf, upper = 1, any.missing = FALSE, len = 2L) expect_true(all(surrogate_constant$insample_perf <= 1e-3)) expect_equal(names(surrogate_constant$insample_perf), map_chr(surrogate$param_set$values$perf_measures, "id")) }) test_that("unique in memory", { learner = REGR_FEATURELESS expect_error(SurrogateLearnerCollection$new(learners = list(learner, learner)), "Redundant Learners") }) test_that("deep clone", { inst = MAKE_INST(OBJ_1D_2, PS_1D, trm("evals", n_evals = 5L)) surrogate1 = SurrogateLearnerCollection$new(learners = list(REGR_FEATURELESS, REGR_FEATURELESS$clone(deep = TRUE)), archive = inst$archive) surrogate2 = surrogate1$clone(deep = TRUE) expect_true(address(surrogate1) != address(surrogate2)) expect_true(address(surrogate1$learner) != address(surrogate2$learner)) expect_true(address(surrogate1$archive) != address(surrogate2$archive)) inst$eval_batch(MAKE_DESIGN(inst)) expect_true(address(surrogate1$archive$data) != address(surrogate2$archive$data)) }) test_that("packages", { skip_if_not_installed("mlr3learners") skip_if_not_installed("DiceKriging") surrogate = SurrogateLearnerCollection$new(learners = list(REGR_KM_DETERM, REGR_FEATURELESS)) expect_equal(surrogate$packages, unique(unlist(map(surrogate$learner, "packages")))) }) test_that("feature types", { skip_if_not_installed("mlr3learners") skip_if_not_installed("DiceKriging") surrogate = SurrogateLearnerCollection$new(learners = list(REGR_KM_DETERM, REGR_FEATURELESS)) expect_equal(surrogate$feature_types, Reduce(intersect, map(surrogate$learner, "feature_types"))) })