lapply(list.files(system.file("testthat", package = "mlr3"), pattern = "^helper.*\\.[rR]", full.names = TRUE), source) # Simple 1D Functions PS_1D = ps( x = p_dbl(lower = -1, upper = 1) ) FUN_1D = function(xs) { list(y = as.numeric(xs)^2) } FUN_1D_CODOMAIN = ps(y = p_dbl(tags = "minimize")) OBJ_1D = ObjectiveRFun$new(fun = FUN_1D, domain = PS_1D, codomain = FUN_1D_CODOMAIN, properties = "single-crit") FUN_1D_2 = function(xs) { list(y1 = as.numeric(xs)^2, y2 = - sqrt(abs(as.numeric(xs)))) } FUN_1D_2_CODOMAIN = ps(y1 = p_dbl(tags = "minimize"), y2 = p_dbl(tags = "minimize")) OBJ_1D_2 = ObjectiveRFun$new(fun = FUN_1D_2, domain = PS_1D, codomain = FUN_1D_2_CODOMAIN, properties = "multi-crit") # Simple 1D Functions with noise FUN_1D_NOISY = function(xs) { list(y = as.numeric(xs)^2 + rnorm(1, sd = 0.5)) } OBJ_1D_NOISY = ObjectiveRFun$new(fun = FUN_1D_NOISY, domain = PS_1D, codomain = FUN_1D_CODOMAIN, properties = c("single-crit", "noisy")) FUN_1D_2_NOISY = function(xs) { list(y1 = as.numeric(xs)^2 + rnorm(1, sd = 0.5), y2 = sqrt(abs(as.numeric(xs))) + rnorm(1, sd = 0.5)) } OBJ_1D_2_NOISY = ObjectiveRFun$new(fun = FUN_1D_2, domain = PS_1D, codomain = FUN_1D_2_CODOMAIN, properties = c("multi-crit", "noisy")) # Mixed 1D Functions PS_1D_MIXED = ps( x1 = p_dbl(-5, 5), x2 = p_fct(c("a", "b", "c")), x3 = p_int(1L, 2L), x4 = p_lgl() ) PS_1D_MIXED_DEPS = PS_1D_MIXED$clone(deep = TRUE) PS_1D_MIXED_DEPS$add_dep("x2", on = "x4", cond = CondEqual$new(TRUE)) FUN_1D_MIXED = function(xs) { if (is.null(xs$x2)) { xs$x2 = "a" } list(y = (xs$x1 - switch(xs$x2, "a" = 0, "b" = 1, "c" = 2)) %% xs$x3 + (if (xs$x4) xs$x1 else pi)) } OBJ_1D_MIXED = ObjectiveRFun$new(fun = FUN_1D_MIXED, domain = PS_1D_MIXED, properties = "single-crit") OBJ_1D_MIXED_DEPS = ObjectiveRFun$new(fun = FUN_1D_MIXED, domain = PS_1D_MIXED_DEPS, properties = "single-crit") FUN_1D_2_MIXED = function(xs) { if (is.null(xs$x2)) { xs$x2 = "a" } list(y1 = (xs$x1 - switch(xs$x2, "a" = 0, "b" = 1, "c" = 2)) %% xs$x3 + (if (xs$x4) xs$x1 else pi), y2 = xs$x1) } OBJ_1D_2_MIXED = ObjectiveRFun$new(fun = FUN_1D_2_MIXED, domain = PS_1D_MIXED, codomain = FUN_1D_2_CODOMAIN, properties = "multi-crit") # Simple 2D Functions PS_2D = ps( x1 = p_dbl(lower = -1, upper = 1), x2 = p_dbl(lower = -1, upper = 1) ) PS_2D_trafo = ps( x1 = p_dbl(lower = -1, upper = 1), x2 = p_dbl(lower = -1, upper = 1, trafo = function(x) x^2) ) FUN_2D = function(xs) { y = sum(as.numeric(xs)^2) list(y = y) } FUN_2D_CODOMAIN = ps(y = p_dbl(tags = c("minimize", "random_tag"))) OBJ_2D = ObjectiveRFun$new(fun = FUN_2D, domain = PS_2D, properties = "single-crit") # Simple 2D Function with noise FUN_2D_NOISY = function(xs) { y = sum(as.numeric(xs)^2) + rnorm(1, sd = 0.5) list(y = y) } OBJ_2D_NOISY = ObjectiveRFun$new(fun = FUN_2D_NOISY, domain = PS_2D, properties = c("single-crit", "noisy")) # Instance helper MAKE_INST = function(objective = OBJ_2D, search_space = PS_2D, terminator = trm("evals", n_evals = 10L)) { if (objective$codomain$length == 1L) { OptimInstanceBatchSingleCrit$new(objective = objective, search_space = search_space, terminator = terminator) } else { OptimInstanceBatchMultiCrit$new(objective = objective, search_space = search_space, terminator = terminator) } } MAKE_INST_1D = function(terminator = trm("evals", n_evals = 5L)) { MAKE_INST(objective = OBJ_1D, search_space = PS_1D, terminator = terminator) } MAKE_INST_1D_NOISY = function(terminator = trm("evals", n_evals = 5L)) { MAKE_INST(objective = OBJ_1D_NOISY, search_space = PS_1D, terminator = terminator) } MAKE_DESIGN = function(instance, n = 4L) { generate_design_random(instance$search_space, n)$data } if (requireNamespace("mlr3learners") && requireNamespace("DiceKriging") && requireNamespace("rgenoud")) { library(mlr3learners) REGR_KM_NOISY = lrn("regr.km", covtype = "matern3_2", optim.method = "gen", control = list(trace = FALSE), nugget.estim = TRUE, jitter = 1e-12) REGR_KM_NOISY$encapsulate("callr", lrn("regr.featureless")) REGR_KM_DETERM = lrn("regr.km", covtype = "matern3_2", optim.method = "gen", control = list(trace = FALSE), nugget.stability = 10^-8) REGR_KM_DETERM$encapsulate("callr", lrn("regr.featureless")) } REGR_FEATURELESS = lrn("regr.featureless") REGR_FEATURELESS$encapsulate("callr", lrn("regr.featureless")) OptimizerError = R6Class("OptimizerError", inherit = OptimizerBatch, public = list( initialize = function() { super$initialize( param_set = ps(), param_classes = c("ParamLgl", "ParamInt", "ParamDbl", "ParamFct"), properties = c("dependencies", "single-crit", "multi-crit") ) } ), private = list( .optimize = function(inst) { stop("Optimizer Error.") } ) ) LearnerRegrError = R6Class("LearnerRegrError", inherit = LearnerRegr, public = list( initialize = function() { ps = ps(error_train = p_lgl(default = TRUE, tags = "train"), error_predict = p_lgl(default = TRUE, tags = "predict")) ps$values = list(error_train = TRUE, error_predict = TRUE) super$initialize( id = "regr.error", feature_types = c("logical", "integer", "numeric", "factor", "ordered"), predict_types = c("response", "se"), param_set = ps ) } ), private = list( .train = function(task) { if (self$param_set$values$error_train) { stop("Surrogate Train Error.") } else { mu = mean(task$data(cols = task$target_names)[[1L]]) sigma = sd(task$data(cols = task$target_names)[[1L]]) list(mu = mu, sigma = sigma) } }, .predict = function(task) { if (self$param_set$values$error_predict) { stop("Surrogate Predict Error.") } else { n = task$nrow if (self$predict_type == "se") { list(response = rep(self$model$mu, n), se = rep(self$model$sigma, n)) } else { list(response = rep(self$model$mu, n), se = rep(self$model$sigma, n)) } } } ) ) expect_dictionary_loop_function = function(d, contains = NA_character_, min_items = 0L) { expect_r6(d, "Dictionary") testthat::expect_output(print(d), "Dictionary") keys = d$keys() expect_environment(d$items) expect_character(keys, any.missing = FALSE, min.len = min_items, min.chars = 1L) if (!is.na(contains)) { expect_list(d$mget(keys), types = contains, names = "unique") } expect_data_table(data.table::as.data.table(d), key = "key", nrows = length(keys)) } expect_loop_function = function(lpf) { expect_class(lpf, "loop_function") expect_subset(c("instance", "surrogate", "acq_function", "acq_optimizer", "init_design_size", "random_interleave_iter"), names(formals(lpf)),) expect_subset(c("id", "label", "instance", "man"), names(attributes(lpf))) expect_string(attr(lpf, "id"), pattern = "bayesopt") expect_string(attr(lpf, "label")) expect_choice(attr(lpf, "instance"), c("single-crit", "multi-crit")) expect_man_exists(attr(lpf, "man")) } expect_acqfunction = function(acqf) { expect_r6(acqf, classes = c("AcqFunction", "Objective")) expect_string(acqf$id, pattern = "acq") expect_string(acqf$label) expect_man_exists(acqf$man) } sortnames = function(x) { if (!is.null(names(x))) { x = x[order(names(x), decreasing = TRUE)] } x } expect_equal_sorted = function(x, y, ...) { expect_equal(sortnames(x), sortnames(y), ...) }