# stages in $optimize() -------------------------------------------------------- test_that("on_optimization_begin works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() callback = callback_async_fselect(id = "test", on_optimization_begin = function(callback, context) { context$instance$terminator$param_set$values$n_evals = 20 } ) on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(2) rush::rush_plan(n_workers = 2, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = TEST_MAKE_TSK(), learner = lrn("regr.rpart"), resampling = rsmp("holdout"), measures = msr("regr.mse"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextAsyncFSelect") expect_equal(instance$terminator$param_set$values$n_evals, 20) expect_rush_reset(instance$rush, type = "kill") }) test_that("on_optimization_end works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() callback = callback_async_fselect(id = "test", on_optimization_end = function(callback, context) { context$instance$terminator$param_set$values$n_evals = 20 } ) on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(2) rush::rush_plan(n_workers = 2, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = TEST_MAKE_TSK(), learner = lrn("regr.rpart"), resampling = rsmp("holdout"), measures = msr("regr.mse"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextAsyncFSelect") expect_equal(instance$terminator$param_set$values$n_evals, 20) expect_rush_reset(instance$rush, type = "kill") }) # stager in worker_loop() ------------------------------------------------------ test_that("on_worker_begin works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() callback = callback_async_fselect(id = "test", on_worker_begin = function(callback, context) { instance = context$instance mlr3misc::get_private(instance)$.eval_point(list(x1 = TRUE, x2 = FALSE, x3 = TRUE, x4 = FALSE)) } ) on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(1) rush::rush_plan(n_workers = 1, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = TEST_MAKE_TSK(), learner = lrn("regr.rpart"), resampling = rsmp("holdout"), measures = msr("regr.mse"), term_evals = 1, callbacks = callback) expect_equal(c(TRUE, FALSE, TRUE, FALSE), as.logical(instance$archive$data[, c("x1", "x2", "x3", "x4"), with = FALSE])) expect_rush_reset(instance$rush, type = "kill") }) test_that("on_worker_end works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() callback = callback_async_fselect(id = "test", on_worker_end = function(callback, context) { instance = context$instance mlr3misc::get_private(instance)$.eval_point(list(x1 = TRUE, x2 = FALSE, x3 = TRUE, x4 = FALSE)) } ) on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(1) rush::rush_plan(n_workers = 1, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = TEST_MAKE_TSK(), learner = lrn("regr.rpart"), resampling = rsmp("holdout"), measures = msr("regr.mse"), term_evals = 2, callbacks = callback) expect_equal(c(TRUE, FALSE, TRUE, FALSE), as.logical(instance$archive$data[nrow(instance$archive$data), c("x1", "x2", "x3", "x4"), with = FALSE])) expect_rush_reset(instance$rush, type = "kill") }) # stages in $.eval_point() ----------------------------------------------------- test_that("on_optimizer_before_eval and on_optimizer_after_eval works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() callback = callback_async_fselect(id = "test", on_optimizer_before_eval = function(callback, context) { context$xs = list(x1 = TRUE, x2 = FALSE, x3 = TRUE, x4 = FALSE) }, on_optimizer_after_eval = function(callback, context) { context$ys = list(regr.mse = 0) } ) on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(1) rush::rush_plan(n_workers = 1, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = TEST_MAKE_TSK(), learner = lrn("regr.rpart"), resampling = rsmp("holdout"), measures = msr("regr.mse"), term_evals = 1, callbacks = callback) expect_equal(c(TRUE, FALSE, TRUE, FALSE), as.logical(instance$archive$data[, c("x1", "x2", "x3", "x4"), with = FALSE])) expect_equal(0, instance$archive$data$regr.mse) expect_rush_reset(instance$rush, type = "kill") }) # stages in $eval() ------------------------------------------------------------ test_that("on_eval_after_xs works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() options(bbotk_local = TRUE) callback = callback_async_fselect(id = "test", on_eval_after_xs = function(callback, context) { context$xs_objective = list(x1 = TRUE, x2 = FALSE, x3 = TRUE, x4 = FALSE) } ) on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(1) rush::rush_plan(n_workers = 1, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = TEST_MAKE_TSK(), learner = lrn("regr.rpart"), resampling = rsmp("holdout"), measures = msr("regr.mse"), term_evals = 1, callbacks = callback) expect_equal(instance$archive$benchmark_result$resample_result(1)$learners[[1]]$state$feature_names, c("x1", "x3")) }) test_that("on_eval_after_resample works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() callback = callback_async_fselect(id = "test", on_eval_after_resample = function(callback, context) { callback$state$extra_performance = context$resample_result$aggregate(msr("classif.acc")) }, on_eval_before_archive = function(callback, context) { context$aggregated_performance$classif.acc = callback$state$extra_performance } ) on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(2) rush::rush_plan(n_workers = 2, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = tsk("pima"), learner = lrn("classif.rpart"), resampling = rsmp("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_names(names(instance$archive$data), must.include = c("classif.ce", "classif.acc")) }) # stages in $assign_result() in FSelectInstanceAsyncSingleCrit ------------------ test_that("on_fselect_result_begin in FSelectInstanceSingleCrit works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() callback = callback_async_fselect(id = "test", on_fselect_result_begin = function(callback, context) { context$result_xdt = data.table(x1 = TRUE, x2 = FALSE, x3 = TRUE, x4 = FALSE) context$result_y = c(regr.mse = 0.7) } ) on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(2) rush::rush_plan(n_workers = 2, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = TEST_MAKE_TSK(), learner = lrn("regr.rpart"), resampling = rsmp("holdout"), measures = msr("regr.mse"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextAsyncFSelect") expect_equal(instance$result_x_search_space, data.table(x1 = TRUE, x2 = FALSE, x3 = TRUE, x4 = FALSE)) expect_equal(instance$result_y, c(regr.mse = 0.7)) }) test_that("on_result_end in FSelectInstanceSingleCrit works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(2) rush::rush_plan(n_workers = 2, worker_type = "remote") callback = callback_async_fselect(id = "test", on_result_end = function(callback, context) { context$result$classif.ce = 0.7 } ) instance = fselect( fselector = fs("async_random_search"), task = tsk("pima"), learner = lrn("classif.rpart"), resampling = rsmp("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextAsyncFSelect") expect_equal(instance$result$classif.ce, 0.7) }) test_that("on_result in FSelectInstanceSingleCrit works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() expect_warning({callback = callback_async_fselect(id = "test", on_result = function(callback, context) { context$result$classif.ce = 0.7 } )}, "deprecated") on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(2) rush::rush_plan(n_workers = 2, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = tsk("pima"), learner = lrn("classif.rpart"), resampling = rsmp("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextAsyncFSelect") expect_equal(instance$result$classif.ce, 0.7) }) # stages in $assign_result() in FSelectInstanceBatchMultiCrit ------------------- test_that("on_fselect_result_begin in FSelectInstanceBatchMultiCrit works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() callback = callback_async_fselect(id = "test", on_fselect_result_begin = function(callback, context) { context$result_xdt = data.table(x1 = TRUE, x2 = FALSE, x3 = TRUE, x4 = FALSE) context$result_ydt = data.table(regr.mse = 0.7, regr.rmse = 0.8) } ) on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(2) rush::rush_plan(n_workers = 2, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = TEST_MAKE_TSK(), learner = lrn("regr.rpart"), resampling = rsmp("holdout"), measures = msrs(c("regr.mse", "regr.rmse")), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextAsyncFSelect") expect_equal(instance$result_x_search_space, data.table(x1 = TRUE, x2 = FALSE, x3 = TRUE, x4 = FALSE)) expect_equal(instance$result_y, data.table(regr.mse = 0.7, regr.rmse = 0.8)) }) test_that("on_result_end in FSelectInstanceBatchMultiCrit works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() callback = callback_async_fselect(id = "test", on_result_end = function(callback, context) { set(context$result, j = "classif.ce", value = 0.7) } ) on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(2) rush::rush_plan(n_workers = 2, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = tsk("pima"), learner = lrn("classif.rpart"), resampling = rsmp("holdout"), measures = msrs(c("classif.ce", "classif.acc")), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextAsyncFSelect") expect_equal(unique(instance$result$classif.ce), 0.7) }) test_that("on_result in FSelectInstanceBatchMultiCrit works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() expect_warning({callback = callback_async_fselect(id = "test", on_result = function(callback, context) { set(context$result, j = "classif.ce", value = 0.7) } )}, "deprecated") on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(2) rush::rush_plan(n_workers = 2, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = tsk("pima"), learner = lrn("classif.rpart"), resampling = rsmp("holdout"), measures = msrs(c("classif.ce", "classif.acc")), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextAsyncFSelect") expect_equal(unique(instance$result$classif.ce), 0.7) }) # stages in mlr3 workhorse ----------------------------------------------------- test_that("on_resample_begin works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() callback = callback_async_fselect("test", on_resample_begin = function(callback, context) { # expect_* does not work assert_task(context$task) assert_learner(context$learner) assert_resampling(context$resampling) checkmate::assert_number(context$iteration) checkmate::assert_null(context$pdatas) context$data_extra = list(success = TRUE) } ) on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(2) rush::rush_plan(n_workers = 2, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = tsk("pima"), learner = lrn("classif.rpart"), resampling = rsmp("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextAsyncFSelect") walk(as.data.table(instance$archive$benchmark_result)$data_extra, function(data_extra) { expect_true(data_extra$success) }) }) test_that("on_resample_before_train works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() callback = callback_async_fselect("test", on_resample_before_train = function(callback, context) { assert_task(context$task) assert_learner(context$learner) assert_resampling(context$resampling) checkmate::assert_number(context$iteration) checkmate::assert_null(context$pdatas) context$data_extra = list(success = TRUE) } ) on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(2) rush::rush_plan(n_workers = 2, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = tsk("pima"), learner = lrn("classif.rpart"), resampling = rsmp("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextAsyncFSelect") walk(as.data.table(instance$archive$benchmark_result)$data_extra, function(data_extra) { expect_true(data_extra$success) }) }) test_that("on_resample_before_predict works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() callback = callback_async_fselect("test", on_resample_before_predict = function(callback, context) { assert_task(context$task) assert_learner(context$learner) assert_resampling(context$resampling) checkmate::assert_null(context$pdatas) context$data_extra = list(success = TRUE) } ) on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(2) rush::rush_plan(n_workers = 2, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = tsk("pima"), learner = lrn("classif.rpart"), resampling = rsmp("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextAsyncFSelect") walk(as.data.table(instance$archive$benchmark_result)$data_extra, function(data_extra) { expect_true(data_extra$success) }) }) test_that("on_resample_end works", { skip_on_cran() skip_if_not_installed("rush") flush_redis() callback = callback_async_fselect("test", on_resample_end = function(callback, context) { # expect_* does not work assert_task(context$task) assert_learner(context$learner) assert_resampling(context$resampling) checkmate::assert_number(context$iteration) checkmate::assert_class(context$pdatas$test, "PredictionData") context$learner$state = mlr3misc::insert_named(context$learner$state, list(state_success = TRUE)) context$data_extra = list(success = TRUE) } ) on.exit({ mirai::daemons(0) flush_redis() }) mirai::daemons(2) rush::rush_plan(n_workers = 2, worker_type = "remote") instance = fselect( fselector = fs("async_random_search"), task = tsk("pima"), learner = lrn("classif.rpart"), resampling = rsmp("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextAsyncFSelect") walk(as.data.table(instance$archive$benchmark_result)$data_extra, function(data_extra) { expect_true(data_extra$success) }) walk(instance$archive$benchmark_result$score()$learner, function(learner, ...) { expect_true(learner$state$state_success) }) })