test_that("empty FSelectInstanceBatchSingleCrit works", { inst = TEST_MAKE_INST_1D() expect_data_table(inst$archive$data, nrows = 0L) expect_identical(inst$archive$n_evals, 0L) expect_identical(inst$archive$n_batch, 0L) expect_null(inst$result) }) test_that("eval_batch works", { inst = TEST_MAKE_INST_1D() xdt = data.table(x1 = list(TRUE, FALSE), x2 = list(FALSE, TRUE), x3 = list(TRUE, TRUE), x4 = list(TRUE, TRUE)) z = inst$eval_batch(xdt) expect_equal(inst$archive$benchmark_result$resample_result(1)$task$feature_names, c("x1", "x3", "x4")) expect_equal(inst$archive$benchmark_result$resample_result(2)$task$feature_names, c("x2", "x3", "x4")) expect_identical(inst$archive$n_evals, 2L) expect_data_table(z, nrows = 2L) expect_named(z, "dummy") z = inst$eval_batch(xdt) expect_equal(inst$archive$benchmark_result$resample_result(3)$task$feature_names, c("x1", "x3", "x4")) expect_equal(inst$archive$benchmark_result$resample_result(4)$task$feature_names, c("x2", "x3", "x4")) expect_identical(inst$archive$n_evals, 4L) expect_data_table(z, nrows = 2L) expect_named(z, "dummy") a = inst$archive$data expect_data_table(a, nrows = 4L) }) test_that("objective_function works", { inst = TEST_MAKE_INST_1D() y = inst$objective_function(c(1, 1, 0, 0)) expect_equal(y, c(dummy = -2)) }) test_that("store_benchmark_result flag works", { inst = TEST_MAKE_INST_1D(store_benchmark_result = FALSE) xdt = data.table(x1 = list(TRUE, FALSE), x2 = list(FALSE, TRUE), x3 = list(TRUE, TRUE), x4 = list(TRUE, TRUE)) inst$eval_batch(xdt) expect_true("uhashes" %nin% colnames(inst$archive$data)) inst = TEST_MAKE_INST_1D(store_benchmark_result = TRUE) xdt = data.table(x1 = list(TRUE, FALSE), x2 = list(FALSE, TRUE), x3 = list(TRUE, TRUE), x4 = list(TRUE, TRUE)) inst$eval_batch(xdt) expect_r6(inst$archive$benchmark_result, "BenchmarkResult") }) test_that("result$features works", { inst = TEST_MAKE_INST_1D(store_benchmark_result = FALSE) xdt = data.table(x1 = list(TRUE), x2 = list(FALSE), x3 = list(TRUE), x4 = list(TRUE)) y = c(dummy = 2) inst$assign_result(xdt, y) expect_character(inst$result_feature_set) }) test_that("always include variable works", { task = tsk("pima") task$set_col_roles("glucose", "always_included") learner = lrn("classif.rpart") resampling = rsmp("cv", folds = 3) instance = fselect( fselector = fs("random_search", batch_size = 100), task = task, learner = learner, resampling = resampling, measures = msr("classif.ce"), terminator = trm("evals", n_evals = 100), store_models = TRUE ) data = as.data.table(instance$archive) expect_names(instance$archive$cols_x, disjunct.from = "gloucose") expect_names(names(instance$archive$data), disjunct.from = "gloucose") walk(data$resample_result, function(rr) { expect_names(names(rr$learners[[1]]$state$data_prototype) %??% rr$learners[[1]]$state$feature_names, must.include = "glucose") }) }) test_that("always include variables works", { task = tsk("pima") task$set_col_roles(c("glucose", "age"), "always_included") learner = lrn("classif.rpart") resampling = rsmp("cv", folds = 3) instance = fselect( fselector = fs("random_search", batch_size = 100), task = task, learner = learner, resampling = resampling, measures = msr("classif.ce"), terminator = trm("evals", n_evals = 100), store_models = TRUE ) data = as.data.table(instance$archive) expect_names(instance$archive$cols_x, disjunct.from = c("glucose", "age")) expect_names(names(instance$archive$data), disjunct.from = c("glucose", "age")) walk(data$resample_result, function(rr) { expect_names(names(rr$learners[[1]]$state$data_prototype) %??% rr$learners[[1]]$state$feature_names, must.include = c("glucose", "age")) }) }) test_that("objective contains no benchmark results", { task = tsk("pima") learner = lrn("classif.rpart") resampling = rsmp("holdout") measure = msr("classif.ce") terminator = trm("evals", n_evals = 10) instance = fsi(task, learner, resampling, measure, terminator) fselector = fs("random_search", batch_size = 1) fselector$optimize(instance) expect_null(instance$objective$.__enclos_env__$private$.benchmark_result) })