test_that("PipeOpFDATsfeatures - basic properties", { pop = po("fda.tsfeats") expect_pipeop(pop) expect_identical(pop$id, "fda.tsfeats") }) test_that("PipeOpFDATsfeatures works", { skip_if_not_installed("tsfeatures") task = tsk("fuel") pop = po("fda.tsfeats") task_tsfeats = train_pipeop(pop, list(task))[[1L]] new_data = task_tsfeats$data() expect_task(task_tsfeats) expect_identical(dim(new_data), c(129L, 34L)) expect_named(new_data, names(new_data)) # single feature work pop = po("fda.tsfeats", features = "entropy") task_tsfeats = train_pipeop(pop, list(task))[[1L]] new_data = task_tsfeats$data() walk(new_data, expect_numeric) expect_identical(dim(new_data), c(129L, 4L)) expect_named(new_data, c("heatan", "h20", "NIR_entropy", "UVVIS_entropy")) # multiple features work pop = po("fda.tsfeats", features = c("frequency", "stl_features")) task_tsfeats = train_pipeop(pop, list(task))[[1L]] new_data = task_tsfeats$data() walk(new_data, expect_numeric) expect_identical(dim(new_data), c(129L, 20L)) expect_match(setdiff(names(new_data), c("heatan", "h20")), "NIR_|UVVIS_") # irregular data works task = tsk("dti") pop = po("fda.tsfeats") task_tsfeats = train_pipeop(pop, list(task))[[1L]] new_data = task_tsfeats$data() expect_task(task_tsfeats) })