test_that("PipeOpFDAInterpol - basic properties", { pop = po("fda.interpol") expect_pipeop(pop) expect_equal(pop$id, "fda.interpol") }) test_that("PipeOpFDAInterpol input validation works", { expect_error(po("fda.interpol", grid = c("union", "intersect"))) expect_error(po("fda.interpol", grid = "unionh")) expect_error(po("fda.interpol", grid = list(1L))) expect_error(po("fda.interpol", grid = logical(1L))) expect_error(po("fda.interpol", grid = factor(1L))) expect_error(po("fda.interpol", grid = numeric(0L))) expect_error(po("fda.interpol", grid = 1:3, method = c("linear", "spline"))) expect_error(po("fda.interpol", grid = 1:3, method = "cube")) task = tsk("fuel") pop = po("fda.interpol", grid = 1:3, left = 1, right = 2) expect_error(pop$train(list(task))) pop = po("fda.interpol", grid = 10L, left = 2, right = 1) expect_error(pop$train(list(task))) }) test_that("PipeOpFDAInterpol extrapolation works", { # extrapolate with fill_extend method dt = data.table( id = rep(1:2, each = 5L), arg = rep(1:5, 2L), value = c(NA, 2, 5, 5, 7, 3, 5, 10, 2, NA) ) dt_in = data.table(y = 1:2, f = tf::tfd(dt, id = "id", arg = "arg", value = "value")) task = as_task_regr(dt_in, target = "y") pop = po("fda.interpol", grid = 1:5, method = "fill_extend") actual = pop$train(list(task))[[1L]]$data() setnafill(dt, fill = 2L) expected = data.table(y = 1:2, f = tf::tfd(dt, id = "id", arg = "arg", value = "value")) expect_equal(actual, expected, ignore_attr = TRUE) # throw warning if extrapolation is not possible pop = po("fda.interpol", grid = 1:5) expect_warning(pop$train(list(task))) }) test_that("PipeOpFDAInterpol works with minmax", { # tfr doesnt't have an effect dt = data.table( id = rep(1:2, each = 5L), arg = rep(1:5, 2L), value = c(1, 2, 5, 5, 7, 3, 5, 10, 2, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = "minmax") task_interpol = pop$train(list(task))[[1L]] expect_equal(task_interpol$data(), dt) # tfi works with same min and max dt = data.table( id = rep(1:2, each = 5L), arg = rep(1:5, 2L), value = c(1, NA, 5, 5, 7, 3, 5, 10, NA, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = "minmax") task_interpol = pop$train(list(task))[[1L]] dt = data.table( id = rep(1:2, each = 5L), arg = rep(1:5, 2L), value = c(1, 3, 5, 5, 7, 3, 5, 10, 11, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") expected = data.table(y = 1:2, f = f) expect_equal(task_interpol$data(), expected) # tfi works with different min and max dt = data.table( id = c(rep(1L, 3L), rep(2L, 6L)), arg = c(3:5, 1:6), value = c(2, 5, 6, 1, 3, 4, 5, 6, 7) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = "minmax") task_interpol = pop$train(list(task))[[1L]] dt = data.table( id = rep(1:2, each = 3L), arg = rep(3:5, 2L), value = c(2, 5, 6, 4, 5, 6) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") expected = data.table(y = 1:2, f = f) expect_equal(task_interpol$data(), expected) }) test_that("PipeOpFDAInterpol works with intersect", { # tfr works dt = data.table( id = rep(1:2, each = 5L), arg = rep(1:5, 2L), value = c(1, 2, 5, 5, 7, 3, 5, 10, 2, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = "intersect") task_interpol = pop$train(list(task))[[1L]] expect_equal(task_interpol$data(), dt) # tfi works with same min and max dt = data.table( id = rep(1:2, each = 5L), arg = rep(1:5, 2L), value = c(1, NA, 5, 5, 7, 3, 5, 10, NA, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = "intersect") task_interpol = pop$train(list(task))[[1L]] dt = data.table( id = rep(1:2, each = 3L), arg = rep(c(1, 3, 5), 2L), value = c(1, 5, 7, 3, 10, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") expected = data.table(y = 1:2, f = f) expect_equal(task_interpol$data(), expected) # tfi works with different min and max dt = data.table( id = c(rep(1L, 3L), rep(2L, 6L)), arg = c(3:5, 1:6), value = c(2, 5, 6, 1, 3, 4, 5, 6, 7) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = "intersect") task_interpol = pop$train(list(task))[[1L]] dt = data.table( id = rep(1:2, each = 3L), arg = rep(3:5, 2L), value = c(2, 5, 6, 4, 5, 6) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") expected = data.table(y = 1:2, f = f) expect_equal(task_interpol$data(), expected) }) test_that("PipeOpFDAInterpol works with union", { # tfr works dt = data.table( id = rep(1:2, each = 5L), arg = rep(1:5, 2L), value = c(1, 2, 5, 5, 7, 3, 5, 10, 2, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = "union") task_interpol = pop$train(list(task))[[1L]] expect_equal(task_interpol$data(), dt) # works with default pop = po("fda.interpol") task_interpol = pop$train(list(task))[[1L]] expect_equal(task_interpol$data(), dt) # tfi works with same min and max dt = data.table( id = rep(1:2, each = 5L), arg = rep(1:5, 2L), value = c(1, NA, 5, 5, 7, 3, 5, 10, NA, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = "union") task_interpol = pop$train(list(task))[[1L]] dt = data.table( id = rep(1:2, each = 5L), arg = rep(1:5, 2L), value = c(1, 3, 5, 5, 7, 3, 5, 10, 11, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") expected = data.table(y = 1:2, f = f) expect_equal(task_interpol$data(), expected) # tfi works with different min and max dt = data.table( id = c(rep(1L, 3L), rep(2L, 6L)), arg = c(3:5, 1:6), value = c(2, NA, 5, 1, 3, 4, 5, 6, 7) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = "union") expect_warning(pop$train(list(task))) task_interpol = suppressWarnings(pop$train(list(task))[[1L]]) dt = data.table( id = c(rep(1L, 3L), rep(2L, 6L)), arg = c(3:5, 1:6), value = c(2, 3.5, 5, 1, 3, 4, 5, 6, 7) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") expected = data.table(y = 1:2, f = f) expect_equal(task_interpol$data(), expected) }) test_that("PipeOpFDAInterpol works with custom grid", { # tfr works dt = data.table( id = rep(1:2, each = 5L), arg = rep(1:5, 2L), value = c(1, 2, 5, 5, 7, 3, 5, 10, 2, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = 3:5) task_interpol = pop$train(list(task))[[1L]] dt = data.table( id = rep(1:2, each = 3L), arg = rep(3:5, 2L), value = c(5, 5, 7, 10, 2, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") expected = data.table(y = 1:2, f = f) expect_equal(task_interpol$data(), expected) # outside of range pop = po("fda.interpol", grid = 3:7) expect_error(pop$train(list(task))) pop = po("fda.interpol", grid = -1:3) expect_error(pop$train(list(task))) # tfi works with same min and max dt = data.table( id = rep(1:2, each = 5L), arg = rep(1:5, 2L), value = c(1, NA, 5, 5, 7, 3, 5, 10, NA, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = 3:5) task_interpol = pop$train(list(task))[[1L]] dt = data.table( id = rep(1:2, each = 3L), arg = rep(3:5, 2L), value = c(5, 5, 7, 10, 11, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") expected = data.table(y = 1:2, f = f) expect_equal(task_interpol$data(), expected) # tfi works with different min and max dt = data.table( id = c(rep(1L, 3L), rep(2L, 6L)), arg = c(3:5, 1:6), value = c(2, 5, 6, 1, 3, 4, 5, 6, 7) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = 3:5) task_interpol = pop$train(list(task))[[1L]] dt = data.table( id = rep(1:2, each = 3L), arg = rep(3:5, 2L), value = c(2, 5, 6, 4, 5, 6) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") expected = data.table(y = 1:2, f = f) expect_equal(task_interpol$data(), expected) }) test_that("PipeOpFDAInterpol works with grid length + left and right", { # tfr works with integer output grid dt = data.table( id = rep(1:2, each = 5L), arg = rep(1:5, 2L), value = c(1, 2, 5, 5, 7, 3, 5, 10, 2, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = 3L, left = 2, right = 4) task_interpol = pop$train(list(task))[[1L]] dt = data.table( id = rep(1:2, each = 3L), arg = rep(2:4, 2L), value = c(2, 5, 5, 5, 10, 2) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") expected = data.table(y = 1:2, f = f) expect_equal(task_interpol$data(), expected) # tfr works with numeric output grid dt = data.table( id = rep(1:2, each = 5L), arg = rep(1:5, 2L), value = c(1, 2, 5, 5, 7, 3, 5, 10, 2, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = 3L, left = 2, right = 5) task_interpol = pop$train(list(task))[[1L]] dt = data.table( id = rep(1:2, each = 3L), arg = rep(c(2, 3.5, 5), 2L), value = c(2, 5, 7, 5, 6, 12) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") expected = data.table(y = 1:2, f = f) expect_equal(task_interpol$data(), expected) # tfi works dt = data.table( id = c(rep(1L, 3L), rep(2L, 6L)), arg = c(3:5, 1:6), value = c(2, 5, 6, 1, 3, 4, 5, 6, 7) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = 3L, left = 3, right = 5) task_interpol = pop$train(list(task))[[1L]] dt = data.table( id = rep(1:2, each = 3L), arg = rep(3:5, 2L), value = c(2, 5, 6, 4, 5, 6) ) f = tf::tfd(dt, id = "id", arg = "arg", value = "value") expected = data.table(y = 1:2, f = f) expect_equal(task_interpol$data(), expected) }) test_that("PipeOpFDAInterpol method arg works", { dt_in = data.table( id = rep(1:2, each = 5L), arg = rep(1:5, 2L), value = c(1, 2, 5, 5, 7, 3, 5, 10, 2, 12) ) dt_out = data.table( id = rep(1:2, each = 3L), arg = rep(3:5, 2L), value = c(5, 5, 7, 10, 2, 12) ) methods = c("linear", "spline", "fill_extend", "locf", "nocb") walk(methods, function(method) { f = tf::tfd(dt_in, id = "id", arg = "arg", value = "value") dt = data.table(y = 1:2, f = f) task = as_task_regr(dt, target = "y") pop = po("fda.interpol", grid = 3:5, method = method) task_interpol = pop$train(list(task))[[1L]] evaluator = paste0("tf_approx_", method) f = do.call(tf::tfd, list(data = dt_out, id = "id", arg = "arg", value = "value", evaluator = evaluator)) expected = data.table(y = 1:2, f = f) expect_equal(task_interpol$data(), expected) }) })