lapply(list.files(system.file("testthat", package = "mlr3"), pattern = "^helper.*\\.[rR]", full.names = TRUE), source) generate_tasks.LearnerClust = function(learner, N = 20L) { # nolint set.seed(1L) data = mlbench::mlbench.2dnormals(N, cl = 2L, r = 2, sd = 0.1) task = TaskClust$new("sanity", mlr3::as_data_backend(as.data.frame(data$x))) list(task) } registerS3method("generate_tasks", "LearnerClust", generate_tasks.LearnerClust, envir = parent.frame() ) sanity_check.PredictionClust = function(prediction, task, ...) { # nolint prediction$score(measures = msr("clust.silhouette"), task = task) > -1L } registerS3method("sanity_check", "PredictionClust", sanity_check.PredictionClust, envir = parent.frame() )