Package: DALEXtra Check: examples New result: ERROR Running examples in ‘DALEXtra-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: explain_xgboost > ### Title: Create explainer from your xgboost model > ### Aliases: explain_xgboost > > ### ** Examples > > library("xgboost") > library("DALEXtra") > library("mlr") Loading required package: ParamHelpers > # 8th column is target that has to be omitted in X data > data <- as.matrix(createDummyFeatures(titanic_imputed[,-8])) > model <- xgboost(data, titanic_imputed$survived, nrounds = 10, + params = list(objective = "binary:logistic"), + prediction = TRUE) Warning in throw_err_or_depr_msg("Parameter(s) have been removed from this function: ", : Parameter(s) have been removed from this function: params. This warning will become an error in a future version. Warning in throw_err_or_depr_msg("Passed unrecognized parameters: ", paste(head(names_unrecognized), : Passed unrecognized parameters: prediction. This warning will become an error in a future version. > # explainer with encode functiom > explainer_1 <- explain_xgboost(model, data = titanic_imputed[,-8], + titanic_imputed$survived, + encode_function = function(data) { + as.matrix(createDummyFeatures(data)) + }) Preparation of a new explainer is initiated -> model label : xgb.Booster (  default  ) -> data : 2207 rows 7 cols -> target variable : 2207 values -> predict function : yhat.xgb.Booster will be used (  default  ) -> predicted values : No value for predict function target column. (  default  ) Error in strsplit(model$params$objective, ":", fixed = TRUE) : non-character argument Calls: explain_xgboost ... explain -> model_info -> model_info.xgb.Booster -> strsplit Execution halted Package: DALEXtra Check: tests New result: ERROR Running ‘testthat.R’ [156s/153s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(DALEXtra) Loading required package: DALEX Welcome to DALEX (version: 2.5.3). Find examples and detailed introduction at: http://ema.drwhy.ai/ Additional features will be available after installation of: ggpubr. Use 'install_dependencies()' to get all suggested dependencies > > test_check("DALEXtra") Preparation of a new explainer is initiated -> model label : LM -> data : 9000 rows 6 cols -> target variable : 9000 values -> predict function : yhat.WrappedModel will be used (  default  ) -> predicted values : No value for predict function target column. (  default  ) -> model_info : package mlr , ver. 2.19.3 , task regression (  default  ) -> predicted values : numerical, min = 1792.597 , mean = 3506.836 , max = 6241.447 -> residual function : difference between y and yhat (  default  ) -> residuals : numerical, min = -257.2555 , mean = 4.687686 , max = 472.356  A new explainer has been created!  Preparation of a new explainer is initiated -> model label : RF -> data : 9000 rows 6 cols -> target variable : 9000 values -> predict function : yhat.WrappedModel will be used (  default  ) -> predicted values : No value for predict function target column. (  default  ) -> model_info : package mlr , ver. 2.19.3 , task regression (  default  ) -> predicted values : numerical, min = 1803.371 , mean = 3503.644 , max = 6247.912 -> residual function : difference between y and yhat (  default  ) -> residuals : numerical, min = -567.8042 , mean = 7.880015 , max = 731.3791  A new explainer has been created!  Preparation of a new explainer is initiated -> model label : GBM -> data : 9000 rows 6 cols -> target variable : 9000 values -> predict function : yhat.WrappedModel will be used (  default  ) -> predicted values : No value for predict function target column. (  default  ) -> model_info : package mlr , ver. 2.19.3 , task regression (  default  ) -> predicted values : numerical, min = 2122.542 , mean = 3503.611 , max = 6049.829 -> residual function : difference between y and yhat (  default  ) -> residuals : numerical, min = -519.5424 , mean = 7.912275 , max = 730.9789  A new explainer has been created!  additional arguments ignored in warning() Preparation of a new explainer is initiated -> model label : ranger (  default  ) -> data : 2207 rows 7 cols -> target variable : 2207 values -> predict function : yhat.ranger will be used (  default  ) -> predicted values : No value for predict function target column. (  default  ) -> model_info : package ranger , ver. 0.17.0 , task classification (  default  ) -> predicted values : numerical, min = 0.009637921 , mean = 0.3217361 , max = 0.9912826 -> residual function : difference between y and yhat (  default  ) -> residuals : numerical, min = -0.7823858 , mean = 0.0004206265 , max = 0.8839248  A new explainer has been created!  additional arguments ignored in warning() Saving _problems/test_xgboost_explain-13.R Saving _problems/test_xgboost_explain-31.R Saving _problems/test_xgboost_explain-50.R [ FAIL 3 | WARN 15 | SKIP 11 | PASS 44 ] ══ Skipped tests (11) ══════════════════════════════════════════════════════════ • Conda test env needed for tests (6): 'test_create_env.R:6:3', 'test_create_env.R:27:3', 'test_create_env.R:40:3', 'test_keras_explain.R:6:2', 'test_scikitlearn_explain.R:6:3', 'tests_prints.R:8:3' • JAVA entry needed for tests (4): 'test_h2o_explain.R:8:3', 'test_h2o_explain.R:33:3', 'test_h2o_explain.R:56:3', 'test_h2o_explain.R:90:3' • Test with windows (1): 'test_champion_challenger.R:5:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_xgboost_explain.R:11:3'): creating explainer classif ─────────── Error in `strsplit(model$params$objective, ":", fixed = TRUE)`: non-character argument Backtrace: ▆ 1. └─DALEXtra::explain_xgboost(...) at test_xgboost_explain.R:11:3 2. └─DALEX::explain(...) 3. ├─DALEX::model_info(model, is_multiclass = task_subtype) 4. └─DALEXtra:::model_info.xgb.Booster(model, is_multiclass = task_subtype) 5. └─base::strsplit(model$params$objective, ":", fixed = TRUE) ── Error ('test_xgboost_explain.R:29:3'): creating explainer regr ────────────── Error in `strsplit(model$params$objective, ":", fixed = TRUE)`: non-character argument Backtrace: ▆ 1. └─DALEXtra::explain_xgboost(...) at test_xgboost_explain.R:29:3 2. └─DALEX::explain(...) 3. ├─DALEX::model_info(model, is_multiclass = task_subtype) 4. └─DALEXtra:::model_info.xgb.Booster(model, is_multiclass = task_subtype) 5. └─base::strsplit(model$params$objective, ":", fixed = TRUE) ── Error ('test_xgboost_explain.R:48:3'): creating explainer multi ───────────── Error in `strsplit(model$params$objective, ":", fixed = TRUE)`: non-character argument Backtrace: ▆ 1. └─DALEXtra::explain_xgboost(...) at test_xgboost_explain.R:48:3 2. └─DALEX::explain(...) 3. ├─DALEX::model_info(model, is_multiclass = task_subtype) 4. └─DALEXtra:::model_info.xgb.Booster(model, is_multiclass = task_subtype) 5. └─base::strsplit(model$params$objective, ":", fixed = TRUE) [ FAIL 3 | WARN 15 | SKIP 11 | PASS 44 ] Error: ! Test failures. Execution halted Package: mlr3benchmark Check: examples New result: ERROR Running examples in ‘mlr3benchmark-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: autoplot.BenchmarkAggr > ### Title: Plots for BenchmarkAggr > ### Aliases: autoplot.BenchmarkAggr > > ### ** Examples > > if (requireNamespaces(c("mlr3learners", "mlr3", "rpart", "xgboost"))) { + library(mlr3) + library(mlr3learners) + library(ggplot2) + + set.seed(1) + task = tsks(c("iris", "sonar", "wine", "zoo")) + learns = lrns(c("classif.featureless", "classif.rpart", "classif.xgboost")) + learns$classif.xgboost$param_set$values$nrounds = 50 + bm = benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 3))) + obj = as_benchmark_aggr(bm) + + # mean and error bars + autoplot(obj, type = "mean", level = 0.95) + + if (requireNamespace("PMCMRplus", quietly = TRUE)) { + # critical differences + autoplot(obj, type = "cd",style = 1) + autoplot(obj, type = "cd",style = 2) + + # post-hoc friedman-nemenyi + autoplot(obj, type = "fn") + } + + } INFO [17:58:21.711] [mlr3] Running benchmark with 36 resampling iterations INFO [17:58:21.724] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 1/3) INFO [17:58:21.743] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 2/3) INFO [17:58:21.761] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 3/3) INFO [17:58:21.779] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 1/3) INFO [17:58:21.800] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 2/3) INFO [17:58:21.822] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 3/3) INFO [17:58:21.844] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 1/3) INFO [17:58:21.885] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 2/3) INFO [17:58:21.918] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 3/3) INFO [17:58:21.950] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/3) INFO [17:58:21.968] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/3) INFO [17:58:21.987] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/3) INFO [17:58:22.006] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/3) INFO [17:58:22.045] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/3) INFO [17:58:22.072] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/3) INFO [17:58:22.100] [mlr3] Applying learner 'classif.xgboost' on task 'sonar' (iter 1/3) INFO [17:58:22.152] [mlr3] Applying learner 'classif.xgboost' on task 'sonar' (iter 2/3) INFO [17:58:22.203] [mlr3] Applying learner 'classif.xgboost' on task 'sonar' (iter 3/3) INFO [17:58:22.255] [mlr3] Applying learner 'classif.featureless' on task 'wine' (iter 1/3) INFO [17:58:22.271] [mlr3] Applying learner 'classif.featureless' on task 'wine' (iter 2/3) INFO [17:58:22.287] [mlr3] Applying learner 'classif.featureless' on task 'wine' (iter 3/3) INFO [17:58:22.304] [mlr3] Applying learner 'classif.rpart' on task 'wine' (iter 1/3) INFO [17:58:22.325] [mlr3] Applying learner 'classif.rpart' on task 'wine' (iter 2/3) INFO [17:58:22.347] [mlr3] Applying learner 'classif.rpart' on task 'wine' (iter 3/3) INFO [17:58:22.368] [mlr3] Applying learner 'classif.xgboost' on task 'wine' (iter 1/3) INFO [17:58:22.402] [mlr3] Applying learner 'classif.xgboost' on task 'wine' (iter 2/3) INFO [17:58:22.436] [mlr3] Applying learner 'classif.xgboost' on task 'wine' (iter 3/3) INFO [17:58:22.470] [mlr3] Applying learner 'classif.featureless' on task 'zoo' (iter 1/3) INFO [17:58:22.486] [mlr3] Applying learner 'classif.featureless' on task 'zoo' (iter 2/3) INFO [17:58:22.503] [mlr3] Applying learner 'classif.featureless' on task 'zoo' (iter 3/3) INFO [17:58:22.519] [mlr3] Applying learner 'classif.rpart' on task 'zoo' (iter 1/3) INFO [17:58:22.540] [mlr3] Applying learner 'classif.rpart' on task 'zoo' (iter 2/3) INFO [17:58:22.561] [mlr3] Applying learner 'classif.rpart' on task 'zoo' (iter 3/3) INFO [17:58:22.582] [mlr3] Applying learner 'classif.xgboost' on task 'zoo' (iter 1/3) INFO [17:58:22.627] [mlr3] Applying learner 'classif.xgboost' on task 'zoo' (iter 2/3) INFO [17:58:22.666] [mlr3] Applying learner 'classif.xgboost' on task 'zoo' (iter 3/3) Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. INFO [17:58:22.716] [mlr3] Finished benchmark Error: Global Friedman test non-significant (p > 0.05), try type = 'mean' instead. Execution halted Package: mlr3tuning Check: examples New result: ERROR Running examples in ‘mlr3tuning-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: mlr_tuners_internal > ### Title: Hyperparameter Tuning with Internal Tuning > ### Aliases: mlr_tuners_internal TunerBatchInternal > > ### ** Examples > > ## Don't show: > if (mlr3misc::require_namespaces(c("mlr3learners", "xgboost"), quietly = TRUE)) withAutoprint({ # examplesIf + ## End(Don't show) + library(mlr3learners) + + # Retrieve task + task = tsk("pima") + + # Load learner and set search space + learner = lrn("classif.xgboost", + nrounds = to_tune(upper = 1000, internal = TRUE), + early_stopping_rounds = 10, + validate = "test", + eval_metric = "merror" + ) + + # Internal hyperparameter tuning on the pima indians diabetes data set + instance = tune( + tnr("internal"), + tsk("iris"), + learner, + rsmp("cv", folds = 3), + msr("internal_valid_score", minimize = TRUE, select = "merror") + ) + + # best performing hyperparameter configuration + instance$result_learner_param_vals + + instance$result_learner_param_vals$internal_tuned_values + ## Don't show: + }) # examplesIf > library(mlr3learners) > task = tsk("pima") > learner = lrn("classif.xgboost", nrounds = to_tune(upper = 1000, internal = TRUE), + early_stopping_rounds = 10, validate = "test", eval_metric = "merror") > instance = tune(tnr("internal"), tsk("iris"), learner, rsmp("cv", folds = 3), + msr("internal_valid_score", minimize = TRUE, select = "merror")) INFO [17:57:02.822] [bbotk] Starting to optimize 0 parameter(s) with '' and '' INFO [17:57:02.825] [bbotk] Evaluating 1 configuration(s) INFO [17:57:02.839] [mlr3] Running benchmark with 3 resampling iterations INFO [17:57:02.865] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 1/3) INFO [17:57:02.925] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 2/3) INFO [17:57:02.979] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 3/3) Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: eval_metric, nthread, num_class. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in throw_err_or_depr_msg("Parameter '", match_old, "' has been renamed to '", : Parameter 'watchlist' has been renamed to 'evals'. This warning will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: eval_metric, nthread, num_class. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in throw_err_or_depr_msg("Parameter '", match_old, "' has been renamed to '", : Parameter 'watchlist' has been renamed to 'evals'. This warning will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: eval_metric, nthread, num_class. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in throw_err_or_depr_msg("Parameter '", match_old, "' has been renamed to '", : Parameter 'watchlist' has been renamed to 'evals'. This warning will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning: Caught simpleError. Canceling all iterations ... Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: eval_metric, nthread, num_class. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in throw_err_or_depr_msg("Parameter '", match_old, "' has been renamed to '", : Parameter 'watchlist' has been renamed to 'evals'. This warning will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: eval_metric, nthread, num_class. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in throw_err_or_depr_msg("Parameter '", match_old, "' has been renamed to '", : Parameter 'watchlist' has been renamed to 'evals'. This warning will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Error in names(x) <- nm : attempt to set an attribute on NULL Calls: withAutoprint ... tryCatchList -> tryCatchOne -> -> onError Execution halted Examples with CPU (user + system) or elapsed time > 5s user system elapsed AutoTuner 5.757 0.231 5.991 mlr3tuning.one_se_rule 5.244 0.016 5.309 Package: vetiver Check: tests New result: ERROR Running ‘testthat.R’ [18s/18s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(vetiver) > > test_check("vetiver") Loading required package: ggplot2 Loading required package: lattice Create a Model Card for your published model * Model Cards provide a framework for transparent, responsible reporting * Use the vetiver `.Rmd` template as a place to start This message is displayed once per session. This is mgcv 1.9-4. For overview type '?mgcv'. Attaching package: 'parsnip' The following object is masked from 'package:e1071': tune Attaching package: 'probably' The following objects are masked from 'package:base': as.factor, as.ordered Attaching package: 'tune' The following object is masked from 'package:e1071': tune The following object is masked from 'package:vetiver': load_pkgs Attaching package: 'rsample' The following object is masked from 'package:e1071': permutations The following object is masked from 'package:caret': calibration Attaching package: 'recipes' The following object is masked from 'package:stats': step Your rsconnect bundle has been created at: * /home/hornik/tmp/scratch/RtmpX1K48v/file4e1ef2649213f/bundle4e1ef13b10141.tar.gz Saving _problems/test-xgboost-9.R [ FAIL 1 | WARN 2 | SKIP 70 | PASS 221 ] ══ Skipped tests (70) ══════════════════════════════════════════════════════════ • On CRAN (70): 'test-api.R:16:1', 'test-api.R:77:1', 'test-attach-pkgs.R:2:5', 'test-attach-pkgs.R:7:5', 'test-attach-pkgs.R:12:5', 'test-caret.R:22:1', 'test-caret.R:65:5', 'test-choose-version.R:4:5', 'test-choose-version.R:33:1', 'test-create-ptype.R:41:1', 'test-dashboard.R:13:5', 'test-gam.R:8:1', 'test-gam.R:60:5', 'test-glm.R:7:1', 'test-glm.R:59:5', 'test-keras.R:1:1', 'test-kproto.R:14:1', 'test-kproto.R:65:5', 'test-luz.R:1:1', 'test-mlr3.R:3:1', 'test-mlr3.R:52:5', 'test-monitor.R:66:5', 'test-monitor.R:72:5', 'test-monitor.R:79:5', 'test-monitor.R:124:5', 'test-pin-read-write.R:3:1', 'test-pin-read-write.R:17:1', 'test-pin-read-write.R:132:5', 'test-predict.R:1:1', 'test-probably.R:48:1', 'test-probably.R:98:5', 'test-probably.R:109:1', 'test-probably.R:159:5', 'test-probably.R:170:1', 'test-probably.R:220:5', 'test-probably.R:232:1', 'test-probably.R:282:5', 'test-ranger.R:9:1', 'test-ranger.R:13:1', 'test-ranger.R:62:5', 'test-recipe.R:14:1', 'test-recipe.R:58:5', 'test-rsconnect.R:18:5', 'test-sagemaker.R:4:5', 'test-sagemaker.R:25:5', 'test-sagemaker.R:49:1', 'test-sagemaker.R:77:1', 'test-sagemaker.R:98:1', 'test-sagemaker.R:112:1', 'test-sagemaker.R:161:1', 'test-stacks.R:1:1', 'test-tidymodels.R:21:1', 'test-tidymodels.R:71:5', 'test-type-convert.R:15:1', 'test-type-convert.R:31:1', 'test-type-convert.R:47:1', 'test-write-docker.R:5:5', 'test-write-docker.R:17:5', 'test-write-docker.R:35:5', 'test-write-docker.R:52:5', 'test-write-docker.R:65:5', 'test-write-docker.R:81:5', 'test-write-docker.R:88:5', 'test-write-plumber.R:4:5', 'test-write-plumber.R:17:5', 'test-write-plumber.R:38:5', 'test-write-plumber.R:57:5', 'test-write-plumber.R:71:5', 'test-write-plumber.R:84:5', 'test-write-plumber.R:98:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-xgboost.R:9:1'): (code run outside of `test_that()`) ─────────── Error in `matrix(NA_real_, ncol = model$nfeatures, dimnames = list("", model$feature_names))`: non-numeric matrix extent Backtrace: ▆ 1. └─vetiver::vetiver_model(cars_xgb, "cars2") at test-xgboost.R:9:1 2. └─vetiver::vetiver_create_ptype(model, save_prototype, ...) 3. ├─vetiver::vetiver_ptype(model, ...) 4. └─vetiver:::vetiver_ptype.xgb.Booster(model, ...) 5. └─base::matrix(...) [ FAIL 1 | WARN 2 | SKIP 70 | PASS 221 ] Error: ! Test failures. Execution halted