test_that("PredictionDataRegr", { task = tsk("mtcars") learner = lrn("regr.featureless", predict_type = "se") p = learner$train(task)$predict(task) pdata = p$data expect_s3_class(pdata, "PredictionDataRegr") expect_integer(pdata$row_ids, any.missing = FALSE) expect_numeric(pdata$truth, any.missing = FALSE) expect_numeric(pdata$response, any.missing = FALSE) expect_numeric(pdata$se, any.missing = FALSE) expect_s3_class(c(pdata, pdata), "PredictionDataRegr") expect_prediction(as_prediction(pdata)) expect_equal(as.data.table(p), as.data.table(as_prediction(pdata))) pdata = filter_prediction_data(pdata, row_ids = 1:3) expect_set_equal(pdata$row_ids, 1:3) expect_numeric(pdata$truth, len = 3) expect_numeric(pdata$response, len = 3) }) test_that("construction of empty PredictionDataRegr", { task = tsk("mtcars") learner = lrn("regr.featureless") learner$train(task) pred = learner$predict(task, row_ids = integer()) expect_prediction(pred) expect_set_equal(pred$predict_types, "response") expect_integer(pred$row_ids, len = 0L) expect_numeric(pred$truth, len = 0L) expect_null(pred$data$se) expect_null(pred$data$distr) expect_data_table(as.data.table(pred), nrows = 0L, ncols = 3L) learner = lrn("regr.featureless", predict_type = "se") learner$train(task) pred = learner$predict(task, row_ids = integer()) expect_prediction(pred) expect_set_equal(pred$predict_types, c("response", "se")) expect_integer(pred$row_ids, len = 0L) expect_numeric(pred$truth, len = 0L) expect_numeric(pred$se, len = 0L) expect_data_table(as.data.table(pred), nrows = 0L, ncols = 4L) }) test_that("PredictionDataRegr with quantiles", { n = 100 probs = c(0.1, 0.5, 0.9) y = runif(n) task = as_task_regr(data.table(y = y), target = "y") quantiles = quantile(y, probs = probs) quantiles = matrix(rep(quantiles, n), nrow = n, byrow = TRUE) setattr(quantiles, "probs", probs) setattr(quantiles, "response", 0.5) data = list(quantiles = quantiles) pdata = as_prediction_data(data, task) pred = as_prediction(pdata) expect_prediction_regr(pred) }) test_that("PredictionDataRegr with quantiles and response", { n = 100 probs = c(0.1, 0.9) y = runif(n) task = as_task_regr(data.table(y = y), target = "y") quantiles = quantile(y, probs = probs) quantiles = matrix(rep(quantiles, n), nrow = n, byrow = TRUE) setattr(quantiles, "probs", probs) data = list(quantiles = quantiles, response = rep(0.5, n)) pdata = as_prediction_data(data, task) pred = as_prediction(pdata) expect_prediction_regr(pred) }) test_that("combine with extra data", { pdata = new_prediction_data(list( row_ids = 1:2, truth = runif(2), response = runif(2), extra = list(extra_col = c("a", "b"), extra_col2 = c(1, 2))), "regr") pdata2 = new_prediction_data(list( row_ids = 1:2, truth = runif(2), response = runif(2), extra = list(extra_col = c("c", "d"), extra_col2 = c(3, 4))), "regr") expect_equal(c(pdata, pdata2)$extra, list(extra_col = c("a", "b", "c", "d"), extra_col2 = c(1, 2, 3, 4))) expect_equal(c(pdata, pdata2, keep_duplicates = FALSE)$extra, list(extra_col = c("c", "d"), extra_col2 = c(3, 4))) pdata2 = new_prediction_data(list( row_ids = 1:2, truth = runif(2), response = runif(2), extra = list(extra_col = c("c", "d"), extra_col3 = c(3, 4))), "regr") expect_equal(c(pdata, pdata2)$extra, list(extra_col = c("a", "b", "c", "d"), extra_col2 = c(1, 2, NA, NA), extra_col3 = c(NA, NA, 3, 4))) pdata2 = new_prediction_data(list( row_ids = 1:2, truth = runif(2), response = runif(2), prob = matrix(c(0.5, 0.5, 0.5, 1), 2)), "regr") expect_error(c(pdata, pdata2), "Some predictions have extra data, others do not") }) test_that("filtering with extra data", { pdata = new_prediction_data(list( row_ids = 1:2, truth = runif(2), response = runif(2), extra = list(extra_col = c("a", "b"), extra_col2 = c(1, 2))), "regr") expect_equal(filter_prediction_data(pdata, row_ids = 1)$extra, list(extra_col = "a", extra_col2 = 1)) expect_equal(filter_prediction_data(pdata, row_ids = 2)$extra, list(extra_col = "b", extra_col2 = 2)) })