test_that("PredictionDataClassif", { task = tsk("iris") learner = lrn("classif.featureless", predict_type = "prob") p = learner$train(task)$predict(task) pdata = p$data expect_s3_class(pdata, "PredictionDataClassif") expect_integer(pdata$row_ids, any.missing = FALSE) expect_factor(pdata$truth, levels = task$class_names, any.missing = FALSE) expect_factor(pdata$response, levels = task$class_names, any.missing = FALSE) expect_matrix(pdata$prob, nrows = task$nrow, ncols = length(task$class_names), any.missing = FALSE) expect_s3_class(c(pdata, pdata), "PredictionDataClassif") expect_prediction(as_prediction(pdata)) expect_equal(as.data.table(p), as.data.table(as_prediction(pdata))) pdata = filter_prediction_data(pdata, row_ids = 1:3) expect_set_equal(pdata$row_ids, 1:3) expect_factor(pdata$truth, len = 3) expect_factor(pdata$response, len = 3) expect_matrix(pdata$prob, nrows = 3) }) test_that("row sums of prob sums up to 1 ", { pdata = new_prediction_data(list(row_ids = 1:2, truth = factor(c("a", "b")), response = c("a", "b"), prob = matrix(c(0.5, 0.5, 0.5, 1), 2)), "classif") expect_error(check_prediction_data(pdata), "sum up") }) test_that("construction of empty PredictionDataClassif", { task = tsk("iris") learner = lrn("classif.featureless") learner$train(task) pred = learner$predict(task, row_ids = integer()) expect_prediction(pred) expect_set_equal(pred$predict_types, "response") expect_integer(pred$row_ids, len = 0L) expect_factor(pred$truth, len = 0L, levels = task$class_names) expect_null(pred$prob) expect_data_table(as.data.table(pred), nrows = 0L, ncols = 3L) learner = lrn("classif.featureless", predict_type = "prob") learner$train(task) pred = learner$predict(task, row_ids = integer()) expect_prediction(pred) expect_set_equal(pred$predict_types, c("response", "prob")) expect_integer(pred$row_ids, len = 0L) expect_factor(pred$truth, len = 0L, levels = task$class_names) expect_matrix(pred$prob, nrows = 0L, ncols = length(task$class_names)) expect_data_table(as.data.table(pred), nrows = 0L, ncols = 6L) }) test_that("combine with extra data", { pdata = new_prediction_data(list( row_ids = 1:2, truth = factor(c("a", "b")), response = c("a", "b"), prob = matrix(c(0.5, 0.5, 0.5, 1), 2), extra = list(extra_col = c("a", "b"), extra_col2 = c(1, 2))), "classif") pdata2 = new_prediction_data(list( row_ids = 1:2, truth = factor(c("a", "b")), response = c("a", "b"), prob = matrix(c(0.5, 0.5, 0.5, 1), 2), extra = list(extra_col = c("c", "d"), extra_col2 = c(3, 4))), "classif") expect_equal(c(pdata, pdata2)$extra, list(extra_col = c("a", "b", "c", "d"), extra_col2 = c(1, 2, 3, 4))) expect_equal(c(pdata, pdata2, keep_duplicates = FALSE)$extra, list(extra_col = c("c", "d"), extra_col2 = c(3, 4))) pdata2 = new_prediction_data(list( row_ids = 1:2, truth = factor(c("a", "b")), response = c("a", "b"), prob = matrix(c(0.5, 0.5, 0.5, 1), 2), extra = list(extra_col = c("c", "d"), extra_col3 = c(3, 4))), "classif") expect_equal(c(pdata, pdata2)$extra, list(extra_col = c("a", "b", "c", "d"), extra_col2 = c(1, 2, NA, NA), extra_col3 = c(NA, NA, 3, 4))) pdata2 = new_prediction_data(list( row_ids = 1:2, truth = factor(c("a", "b")), response = c("a", "b"), prob = matrix(c(0.5, 0.5, 0.5, 1), 2)), "classif") expect_error(c(pdata, pdata2), "Some predictions have extra data, others do not") }) test_that("filtering with extra data", { pdata = new_prediction_data(list( row_ids = 1:2, truth = factor(c("a", "b")), response = c("a", "b"), prob = matrix(c(0.5, 0.5, 0.5, 1), 2), extra = list(extra_col = c("a", "b"), extra_col2 = c(1, 2))), "classif") expect_equal(filter_prediction_data(pdata, row_ids = 1)$extra, list(extra_col = "a", extra_col2 = 1)) expect_equal(filter_prediction_data(pdata, row_ids = 2)$extra, list(extra_col = "b", extra_col2 = 2)) })