test_that("mlr_measures_regr.rqr", { tsk = tsk("california_housing") lrn = lrn("regr.featureless") expect_error(msr("regr.rqr", alpha = 2), "alpha: Element 1 is not <= 1") # default m = msr("regr.rqr") expect_null(m$properties) expect_equal(m$param_set$values$alpha, 0.5) # missing predict type preds_na = lrn$train(tsk)$predict(tsk) expect_warning(preds_na$score(m), "missing predict type 'quantiles'") score_na = suppressWarnings(unname(preds_na$score(m))) expect_equal(score_na, NaN) # proper quantile prediction lrn$predict_type = "quantiles" lrn$quantiles = c(0.25, 0.5, 0.75) lrn$quantile_response = 0.5 preds = lrn$train(tsk)$predict(tsk) expect_number(preds$score(m)) expect_true(preds$score(m) == 0) # pred_set_mean m2 = msr("regr.rqr", pred_set_mean = FALSE) expect_equal(m2$properties, c("requires_task", "requires_train_set")) expect_number(preds$score(m2, task = tsk, train_set = tsk$nrow)) m_25 = msr("regr.rqr", alpha = 0.25) expect_number(preds$score(m_25)) # alpha must be in predicted quantiles expect_error(preds$score(msr("regr.pinball", alpha = 0.1)), "Must be element of set") })