test_that("LearnerClassif predict_newdata_fast response works", { learner = lrn("classif.debug") task = tsk("pima") newdata = task$data() learner$train(task) pred = learner$predict_newdata_fast(newdata) expect_list(pred) expect_names(names(pred), subset.of = c("response", "prob")) expect_character(pred$response) }) test_that("LearnerClassif predict_newdata_fast prob works", { learner = lrn("classif.debug", predict_type = "prob") task = tsk("pima") newdata = task$data() learner$train(task) pred = learner$predict_newdata_fast(newdata) expect_list(pred) expect_names(names(pred), subset.of = c("response", "prob")) expect_matrix(pred$prob, nrows = nrow(newdata), ncols = length(task$class_names)) }) test_that("LearnerClassif predict_newdata_fast works with missing values", { learner = lrn("classif.debug", predict_missing = 0.5) learner$encapsulate("evaluate", fallback = lrn("classif.featureless")) task = tsk("pima") newdata = task$data() learner$train(task) pred = learner$predict_newdata_fast(newdata) expect_list(pred) expect_names(names(pred), subset.of = c("response", "prob")) expect_character(pred$response, any.missing = FALSE) learner = lrn("classif.debug", predict_missing = 0.5, predict_type = "prob") learner$encapsulate("evaluate", fallback = lrn("classif.featureless", predict_type = "prob")) task = tsk("pima") newdata = task$data() learner$train(task) pred = learner$predict_newdata_fast(newdata) expect_list(pred) expect_names(names(pred), subset.of = c("response", "prob")) expect_matrix(pred$prob, nrows = nrow(newdata), ncols = length(task$class_names), any.missing = FALSE) }) test_that("LearnerClassif predict_newdata_fast works with failed train", { learner = lrn("classif.debug", predict_missing = 0.5, error_train = 1) learner$encapsulate("evaluate", fallback = lrn("classif.featureless")) task = tsk("pima") newdata = task$data() learner$train(task) pred = learner$predict_newdata_fast(newdata) expect_list(pred) expect_names(names(pred), subset.of = c("response", "prob")) expect_character(pred$response, any.missing = FALSE) learner = lrn("classif.debug", predict_missing = 0.5, predict_type = "prob", error_train = 1) learner$encapsulate("evaluate", fallback = lrn("classif.featureless", predict_type = "prob")) task = tsk("pima") newdata = task$data() learner$train(task) pred = learner$predict_newdata_fast(newdata) expect_list(pred) expect_names(names(pred), subset.of = c("response", "prob")) expect_matrix(pred$prob, nrows = nrow(newdata), ncols = length(task$class_names), any.missing = FALSE) })