test_that("Regression measures", { keys = mlr_measures$keys("^regr\\.") task = tsk("california_housing") learner = lrn("regr.rpart") learner$train(task) p = learner$predict(task) for (key in keys) { m = mlr_measures$get(key) if (is.na(m$task_type) || m$task_type == "regr") { if (m$predict_type == "quantiles") { learner_q = lrn("regr.featureless", predict_type = "quantiles", quantiles = 0.5) learner_q$train(task) p_q = learner_q$predict(task) perf = m$score(prediction = p_q, task = task, learner = learner_q) expect_number(perf, na.ok = FALSE, lower = m$range[1], upper = m$range[2]) } else { perf = m$score(prediction = p, task = task, learner = learner) expect_number(perf, na.ok = FALSE, lower = m$range[1], upper = m$range[2]) } } } })