test_that("results are ordered", { grid = data.table( task = tsks(c("iris", "sonar")), learner = lrns(c("classif.featureless", "classif.debug")), resampling = rsmps("cv", folds = 3) ) grid$resampling = pmap(grid, function(task, resampling, ...) resampling$clone(deep = TRUE)$instantiate(task)) bmr = benchmark(grid, store_models = TRUE) rdata = get_private(bmr)$.data tab = rdata$as_data_table() expect_equal(rdata$uhashes(), rdata$data$uhashes$uhash) expect_equal(unique(hashes(tab$task)), hashes(grid$task)) expect_equal(unique(hashes(tab$learner)), hashes(grid$learner)) expect_equal(unique(hashes(tab$resampling)), hashes(grid$resampling)) rdata$data$uhashes$uhash = rev(rdata$data$uhashes$uhash) tab = rdata$as_data_table() expect_equal(rdata$uhashes(), rdata$data$uhashes$uhash) expect_equal(unique(hashes(tab$task)), rev(hashes(grid$task))) expect_equal(unique(hashes(tab$learner)), rev(hashes(grid$learner))) expect_equal(unique(hashes(tab$resampling)), rev(hashes(grid$resampling))) rr = resample(tsk("pima"), lrn("classif.rpart"), rsmp("holdout")) rdata$combine(get_private(rr)$.data) expect_resultdata(rdata) expect_equal(rdata$uhashes()[3], rr$uhash) # remove rr in the middle uhashes = rdata$uhashes() rdata$data$fact = rdata$data$fact[!list(uhashes[2])] rdata$sweep() expect_resultdata(rdata, TRUE) expect_equal(rdata$uhashes(), uhashes[c(1, 3)]) # test discard expect_true(!every(map(rdata$data$fact$learner_state, "model"), is.null)) expect_true(!some(map(rdata$data$tasks$task, "backend"), is.null)) rdata$discard(models = TRUE) expect_true(every(map(rdata$data$fact$learner_state, "model"), is.null)) rdata$discard(backends = TRUE) expect_true(every(map(rdata$data$tasks$task, "backend"), is.null)) }) test_that("mlr3tuning use case", { task = tsk("iris") learners = replicate(3, lrn("classif.rpart"), simplify = FALSE) learners[[1]]$param_set$values = list(xval = 0, cp = 0.1) learners[[2]]$param_set$values = list(xval = 0, cp = 0.2) learners[[3]]$param_set$values = list(xval = 0, cp = 0.3) resampling = rsmp("holdout") resampling$instantiate(task) bmr = benchmark(data.table(task = list(task), learner = learners, resampling = list(resampling))) rdata = get_private(bmr)$.data expect_resultdata(rdata) expect_data_table(rdata$data$fact, nrows = 3L) expect_data_table(rdata$data$tasks, nrows = 1L) expect_data_table(rdata$data$learners, nrows = 1L) expect_data_table(rdata$data$learner_components, nrows = 3L) expect_data_table(rdata$data$resamplings, nrows = 1L) expect_set_equal(map_dbl(bmr$learners$learner, function(l) l$param_set$values$cp), 1:3 / 10) get_params = function(l) l$param_set$values$cp has_state = function(l) length(l$state) > 0L expect_set_equal(map_dbl(bmr$learners$learner, get_params), 1:3 / 10) expect_true(all(!map_lgl(bmr$learners$learner, has_state))) aggr = bmr$aggregate() expect_set_equal(map_dbl(map(aggr$resample_result, "learner"), get_params), 1:3 / 10) expect_true(all(!map_lgl(map(aggr$resample_result, "learner"), has_state))) scores = bmr$score() expect_set_equal(map_dbl(scores$learner, get_params), 1:3 / 10) expect_true(every(scores$learner, has_state)) learner_states = rdata$learner_states() expect_list(learner_states, any.missing = FALSE, len = 3) expect_set_equal(map_dbl(learner_states, function(l) l$param_vals$cp), 1:3 / 10) }) test_that("predict set selection", { task = tsk("mtcars") learner = lrn("regr.rpart", predict_sets = c("train", "test")) resampling = rsmp("holdout") rr = resample(task, learner, resampling) p1 = rr$predictions("train")[[1]] p2 = rr$predictions("test")[[1]] expect_prediction(p1) expect_prediction(p2) expect_disjunct(p1$row_ids, p2$row_ids) p1 = rr$prediction("train") p2 = rr$prediction("test") expect_prediction(p1) expect_prediction(p2) expect_disjunct(p1$row_ids, p2$row_ids) })