disable_encapsulation = function(learner) { learner$encapsulate("none") learner } enable_encapsulation = function(learner) { learner$encapsulate("evaluate", default_fallback(learner)) learner } task = tsk("iris") learner = lrn("classif.debug") learner$param_set$values = list(message_train = 1, warning_train = 1, message_predict = 1, warning_predict = 1) test_that("evaluate / single step", { row_ids = 1:120 expect_message(expect_warning(disable_encapsulation(learner)$train(task, row_ids))) log = learner$log expect_data_table(log) expect_silent(enable_encapsulation(learner)$train(task, row_ids)) log = learner$log expect_data_table(log) expect_data_table(log, nrows = 2L, ncols = 3L, any.missing = FALSE) expect_factor(log$class) expect_set_equal(as.character(log$class), c("output", "warning")) expect_true(all(grepl("->train()", log$msg, fixed = TRUE))) expect_true("output" %in% log$class) expect_true("warning" %in% log$class) expect_false("error" %in% log$class) expect_message(expect_warning(disable_encapsulation(learner)$predict(task, row_ids = 101:150))) log = learner$log[stage == "predict"] expect_data_table(log) expect_equal(nrow(log), 0) p = enable_encapsulation(learner)$predict(task, row_ids = 101:150) log = learner$log[stage == "predict"] expect_data_table(log) expect_data_table(log, nrows = 2L, ncols = 3L, any.missing = FALSE) expect_factor(log$class) expect_equal(as.character(log$class), c("output", "warning")) expect_true(all(grepl("->predict()", log$msg, fixed = TRUE))) }) test_that("evaluate / resample", { resampling = rsmp("cv", folds = 3) rr = suppressMessages(suppressWarnings(resample(task, disable_encapsulation(learner), resampling))) expect_true(every(get_private(rr)$.data$data$fact$learner_state, function(x) nrow(x$log) == 0L)) expect_silent(rr <- resample(task, enable_encapsulation(learner), resampling)) expect_true(every(get_private(rr)$.data$data$fact$learner_state, function(x) all(table(x$log$stage) == 2))) }) test_that("errors and warnings are printed with logger", { task = tsk("spam") old_threshold = lg$threshold lg$set_threshold("warn") on.exit({ lg$set_threshold(old_threshold) }) learner = enable_encapsulation(lrn("classif.debug", error_train = 1)) expect_output(learner$train(task), "ERROR") learner = disable_encapsulation(lrn("classif.debug", error_train = 1)) expect_error(learner$train(task)) learner = enable_encapsulation(lrn("classif.debug", warning_train = 1)) expect_output(learner$train(task), "WARN") learner = disable_encapsulation(lrn("classif.debug", warning_train = 1)) expect_warning(learner$train(task)) }) test_that("encapsulate methods produce the same results", { rng_state = .GlobalEnv$.Random.seed on.exit({.GlobalEnv$.Random.seed = rng_state}) set.seed(123) learner = lrn("classif.debug") learner$train(task) expect_equal(learner$model$random_number, 2986) expect_equal(sample(seq(1000), 1), 818) rr = resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) expect_equal(map_int(rr$learners, function(learner) learner$model$random_number), c(37151, 94567, 21057)) set.seed(123) learner = lrn("classif.debug") learner$encapsulate("try", lrn("classif.featureless")) learner$train(task) expect_equal(learner$model$random_number, 2986) expect_equal(sample(seq(1000), 1), 818) rr = resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) expect_equal(map_int(rr$learners, function(learner) learner$model$random_number), c(37151, 94567, 21057)) set.seed(123) learner = lrn("classif.debug") learner$encapsulate("evaluate", lrn("classif.featureless")) learner$train(task) expect_equal(learner$model$random_number, 2986) expect_equal(sample(seq(1000), 1), 818) rr = resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) expect_equal(map_int(rr$learners, function(learner) learner$model$random_number), c(37151, 94567, 21057)) set.seed(123) learner = lrn("classif.debug") learner$encapsulate("callr", lrn("classif.featureless")) learner$train(task) expect_equal(learner$model$random_number, 2986) expect_equal(sample(seq(1000), 1), 818) rr = resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) expect_equal(map_int(rr$learners, function(learner) learner$model$random_number), c(37151, 94567, 21057)) })