test_that("train fails gracefully", { task = tsk("iris") learner = lrn("classif.debug", error_train = 1) expect_error(learner$train(task), "classif.debug") }) test_that("predict fails gracefully", { task = tsk("iris") learner = lrn("classif.debug", error_predict = 1) learner$train(task) expect_error(learner$predict(task), "classif.debug") }) test_that("fail during train", { task = tsk("iris") learner = lrn("classif.debug", error_train = 1) learner$encapsulate("evaluate", lrn("classif.featureless")) expect_class(learner$fallback, "LearnerClassifFeatureless") learner$train(task) expect_s3_class(learner$state$fallback_state$model, "classif.featureless_model") expect_null(learner$state$model) expect_number(learner$state$train_time, lower = 0) expect_prediction(learner$predict(task)) }) test_that("fail during predict", { task = tsk("iris") learner = lrn("classif.debug", error_predict = 1) learner$encapsulate("evaluate", lrn("classif.featureless")) expect_class(learner$fallback, "LearnerClassifFeatureless") learner$train(task) expect_s3_class(learner$state$fallback_state$model, "classif.featureless_model") expect_s3_class(learner$state$model, "classif.debug_model") expect_number(learner$state$train_time, lower = 0) expect_prediction(learner$predict(task)) }) test_that("fail during resample", { task = tsk("iris") learner = lrn("classif.debug", error_predict = 1) learner$encapsulate("evaluate", lrn("classif.featureless")) expect_class(learner$fallback, "LearnerClassifFeatureless") rr = resample(tsk("iris"), learner, rsmp("cv", folds = 3)) expect_data_table(rr$errors, nrows = 3) expect_number(rr$aggregate(msr("classif.ce"))) }) test_that("incomplete predictions", { task = tsk("iris") learner = lrn("classif.debug", predict_type = "prob", predict_missing = 0.5) learner$encapsulate("evaluate", lrn("classif.featureless", predict_type = "prob")) expect_class(learner$fallback, "LearnerClassifFeatureless") learner$train(task) p = learner$predict(task) expect_prediction(p) expect_factor(p$response, any.missing = FALSE) expect_matrix(p$prob, any.missing = FALSE) rr = resample(tsk("iris"), learner, rsmp("cv", folds = 3)) expect_prediction(rr$prediction()) expect_factor(rr$prediction()$response, any.missing = FALSE) expect_matrix(rr$prediction()$prob, any.missing = FALSE) }) test_that("fallback properties are checked", { learner = lrn("classif.featureless") fallback = lrn("classif.debug") expect_warning(learner$encapsulate("evaluate", fallback), "The fallback learner") })