test_that("Construction", { task = tsk("boston_housing") p = PredictionRegr$new(row_ids = task$row_ids, truth = task$truth(), response = task$truth()) expect_prediction(p) expect_prediction_regr(p) }) test_that("Internally constructed Prediction", { task = tsk("boston_housing") lrn = lrn("regr.featureless") lrn$predict_type = "se" p = lrn$train(task)$predict(task) expect_prediction(p) expect_prediction_regr(p) }) test_that("c", { task = tsk("boston_housing") lrn = lrn("regr.featureless") lrn$predict_type = "se" rr = resample(task, lrn, rsmp("cv", folds = 3)) pred = do.call(c, rr$predictions()) expect_prediction(pred) expect_prediction_regr(pred) dt = as.data.table(pred) expect_data_table(dt, nrows = task$nrow, ncols = 4L, any.missing = FALSE) # duplicates are detected? p1 = get_private(rr)$.data$data$fact$prediction[[1L]]$test p2 = get_private(rr)$.data$data$fact$prediction[[1L]]$test p3 = c(p1, p2, keep_duplicates = FALSE) expect_equal(sort(p1$data$row_ids), sort(p2$data$row_ids)) expect_equal(sort(p1$data$row_ids), sort(p3$data$row_ids)) expect_numeric(p3$response, len = length(p1$response), any.missing = FALSE) expect_numeric(p3$se, len = length(p1$se), any.missing = FALSE) }) test_that("c drops se (#250)", { task = tsk("boston_housing") lrn = lrn("regr.featureless") rr = resample(task, lrn, rsmp("cv", folds = 3)) pred = do.call(c, rr$predictions()) expect_null(pred$data$se) expect_false("se" %in% pred$predict_types) expect_true(allMissing(pred$se)) expect_false("se" %in% names(as.data.table(pred))) }) test_that("distr", { skip_if_not_installed("distr6") task = tsk("mtcars") distr = distr6::VectorDistribution$new( distribution = "Binomial", params = replicate(task$nrow, list(prob = runif(1), size = 10), FALSE) ) p = PredictionRegr$new(row_ids = task$row_ids, truth = task$truth(), distr = distr, check = TRUE) expect_output(print(p)) expect_set_equal(p$predict_types, c("response", "se", "distr")) expect_numeric(p$response, len = task$nrow, any.missing = FALSE) expect_numeric(p$se, len = task$nrow, any.missing = FALSE, lower = 0) expect_integer(p$missing, len = 0) expect_prediction(p) expect_prediction(c(p, p)) expect_output(print(p)) expect_set_equal(p$predict_types, c("response", "se", "distr")) expect_numeric(p$response, len = task$nrow, any.missing = FALSE) expect_numeric(p$se, len = task$nrow, any.missing = FALSE, lower = 0) expect_integer(p$missing, len = 0) }) test_that("as_prediction_regr", { task = tsk("mtcars") learner = lrn("regr.featureless") p = learner$train(task)$predict(task) tab = as.data.table(p) p2 = as_prediction_regr(tab) expect_equal(tab, as.data.table(p2)) }) test_that("filtering", { task = tsk("mtcars") p = PredictionRegr$new(row_ids = task$row_ids, truth = task$truth(), response = task$truth()) p2 = p$clone()$filter(1:3) expect_set_equal(p$row_ids, 1:32) expect_set_equal(p2$row_ids, 1:3) expect_prediction(as_prediction_regr(as.data.table(p2))) }) test_that("obs_loss", { task = tsk("mtcars") p = PredictionRegr$new(row_ids = task$row_ids, truth = task$truth(), response = task$truth()) m = msr("regr.mse") loss = p$obs_loss() expect_double(loss$regr.mse, lower = 0, any.missing = FALSE) })