test_that("learner is hotstarted when the hotstart parameter is increased", { task = tsk("pima") learner_1 = lrn("classif.debug", iter = 1) learner_1$train(task) id = learner_1$model$id learner = lrn("classif.debug", iter = 2) hot = HotstartStack$new(list(learner_1)) learner$hotstart_stack = hot learner$train(task) expect_equal(learner$model$id, id) expect_equal(learner$model$iter, 2) expect_equal(learner$param_set$values$iter, 2) }) test_that("learner is directly returned when hotstart and target learner are equal", { task = tsk("pima") learner_1 = lrn("classif.debug", iter = 1) learner_1$train(task) id = learner_1$model$id learner = lrn("classif.debug", iter = 1) hot = HotstartStack$new(list(learner_1)) learner$hotstart_stack = hot learner$train(task) expect_equal(learner$model$id, id) }) test_that("learner is trained when target learner has an additional non-hotstart parameter", { task = tsk("pima") learner_1 = lrn("classif.debug", iter = 1) learner_1$train(task) id = learner_1$model$id learner = lrn("classif.debug", iter = 2, x = 1) hot = HotstartStack$new(list(learner_1)) learner$hotstart_stack = hot learner$train(task) expect_true(learner$model$id != id) expect_equal(learner$param_set$values$x, 1) expect_equal(learner$param_set$values$iter, 2) expect_equal(learner$model$iter, 2) }) test_that("learner is trained when target learner has an additional hotstart parameter", { task = tsk("pima") learner_1 = lrn("classif.debug", x = 0) learner_1$train(task) learner_1$state$param_vals$iter = NULL # iter set by default. Assume it is not. id = learner_1$model$id learner = lrn("classif.debug", iter = 5) hot = HotstartStack$new(list(learner_1)) learner$hotstart_stack = hot learner$train(task) expect_true(learner$model$id != id) }) test_that("learner is trained when target learner has an increased hotstart parameter and additional non-hotstart parameter", { task = tsk("pima") learner_1 = lrn("classif.debug", iter = 1) learner_1$train(task) id = learner_1$model$id learner = lrn("classif.debug", iter = 2, x = 1) hot = HotstartStack$new(list(learner_1)) learner$hotstart_stack = hot learner$train(task) expect_true(learner$model$id != id) }) test_that("learner is trained when the hotstart parameter of the target and hotstart learner are equal but the non-hotstart parameter is changed", { task = tsk("pima") learner_1 = lrn("classif.debug", iter = 1, x = 0) learner_1$train(task) id = learner_1$model$id learner = lrn("classif.debug", iter = 1, x = 1) hot = HotstartStack$new(list(learner_1)) learner$hotstart_stack = hot learner$train(task) expect_true(learner$model$id != id) }) test_that("learner is hotstarted when the non-hotstart parameter of the target and hotstart learner are equal but the hotstart parameter is increased", { task = tsk("pima") learner_1 = lrn("classif.debug", iter = 1, x = 0) learner_1$train(task) id = learner_1$model$id learner = lrn("classif.debug", iter = 2, x = 0) hot = HotstartStack$new(list(learner_1)) learner$hotstart_stack = hot learner$train(task) expect_equal(learner$model$id, id) }) test_that("learner is trained when the task is different", { task = tsk("pima") learner_1 = lrn("classif.debug", iter = 1) learner_1$train(task) id = learner_1$model$id learner = lrn("classif.debug", iter = 2) hot = HotstartStack$new(list(learner_1)) learner$hotstart_stack = hot learner$train(tsk("iris")) expect_true(learner$model$id != id) }) test_that("learner is trained when the stack is empty", { task = tsk("pima") learner = lrn("classif.debug", iter = 2) learner$hotstart_stack = HotstartStack$new() learner$train(tsk("iris")) expect_class(learner$model, "classif.debug_model") }) test_that("learners are hotstarted when resample is used", { task = tsk("pima") learner_1 = lrn("classif.debug", iter = 1) resampling = rsmp("cv", folds = 3) resampling$instantiate(task) rr = resample(task, learner_1, resampling, store_models = TRUE) learner = lrn("classif.debug", iter = 2) hot = HotstartStack$new(rr$learners) learner$hotstart_stack = hot rr_2 = resample(task, learner, resampling, store_models = TRUE, allow_hotstart = TRUE) pmap(list(rr$learners, rr_2$learners), function(l1, l2) { expect_equal(l2$param_set$values$iter, 2) expect_class(l2$model, "classif.debug_model") expect_equal(l2$model$iter, 2) expect_equal(l1$model$id, l2$model$id) expect_null(l2$hotstart_stack) }) }) test_that("learners are hotstarted when benchmark is called", { task = tsk("pima") learner_1 = lrn("classif.debug", iter = 1) learner_2 = lrn("classif.debug", iter = 2) resampling = rsmp("cv", folds = 3) resampling$instantiate(task) design = benchmark_grid(task, list(learner_1, learner_2), resampling) bmr = benchmark(design, store_models = TRUE) learners = unlist(map(seq_len(bmr$n_resample_results), function(i) bmr$resample_result(i)$learners)) hot = HotstartStack$new(learners) ids = map_chr(learners, function(l) l$model$id) learner = lrn("classif.debug", iter = 3) learner$hotstart_stack = hot design = benchmark_grid(task, learner, resampling) bmr_2 = benchmark(design, store_models = TRUE, allow_hotstart = TRUE) walk(bmr_2$resample_result(1)$learners, function(l1) { expect_equal(l1$param_set$values$iter, 3) expect_class(l1$model, "classif.debug_model") expect_equal(l1$model$iter, 3) expect_true(l1$model$id %in% ids) expect_null(l1$hotstart_stack) }) }) test_that("learners are trained and hotstarted when benchmark is called", { task = tsk("pima") learner_1 = lrn("classif.debug", iter = 1) learner_2 = lrn("classif.debug", iter = 2) resampling = rsmp("cv", folds = 3) resampling$instantiate(task) design = benchmark_grid(task, list(learner_1, learner_2), resampling) bmr = benchmark(design, store_models = TRUE) learners = unlist(map(seq_len(bmr$n_resample_results), function(i) bmr$resample_result(i)$learners)) hot = HotstartStack$new(learners) ids = map_chr(learners, function(l) l$model$id) learner_3 = lrn("classif.debug", iter = 4) learner_3$hotstart_stack = hot learner_4 = lrn("classif.rpart") learner_4$hotstart_stack = hot design = benchmark_grid(task, list(learner_3, learner_4), resampling) bmr_2 = benchmark(design, store_models = TRUE, allow_hotstart = TRUE) walk(bmr_2$resample_result(1)$learners, function(l1) { expect_equal(l1$param_set$values$iter, 4) expect_class(l1$model, "classif.debug_model") expect_equal(l1$model$iter, 4) expect_true(l1$model$id %in% ids[4:6]) expect_null(l1$hotstart_stack) }) walk(bmr_2$resample_result(2)$learners, function(l1) { expect_class(l1$model, "rpart") expect_null(l1$hotstart_stack) }) }) test_that("learners are cloned when hotstarting is applied", { task = tsk("pima") learner_1 = lrn("classif.debug", iter = 1) resampling = rsmp("holdout") resampling$instantiate(task) design = benchmark_grid(task, learner_1, resampling) bmr = benchmark(design, store_models = TRUE, allow_hotstart = TRUE) learner_2 = lrn("classif.debug", iter = 2) hot = HotstartStack$new(bmr$resample_result(1)$learners) learner_2$hotstart_stack = hot design = benchmark_grid(task, learner_2, resampling) bmr = benchmark(design, store_models = TRUE, allow_hotstart = TRUE) expect_equal(bmr$resample_result(1)$learners[[1]]$param_set$values$iter, 2) expect_equal(bmr$resample_result(1)$learners[[1]]$model$iter, 2) expect_equal(hot$stack$start_learner[[1]]$param_set$values$iter, 1) expect_equal(hot$stack$start_learner[[1]]$model$iter, 1) expect_equal(bmr$resample_result(1)$learners[[1]]$model$id, hot$stack$start_learner[[1]]$model$id) })