library(mlbench) data("PimaIndiansDiabetes2") dataset <- PimaIndiansDiabetes2 |> data.table::as.data.table() |> na.omit() seed <- 312 feature_cols <- colnames(dataset)[1:8] param_list_ranger <- expand.grid( num.trees = seq(500, 1000, 500), mtry = seq(2, 6, 2), min.node.size = seq(1, 9, 4), max.depth = seq(1, 9, 4), sample.fraction = seq(0.5, 0.8, 0.3) ) if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) { # on cran ncores <- 2L } else { ncores <- ifelse( test = parallel::detectCores() > 4, yes = 4L, no = ifelse( test = parallel::detectCores() < 2L, yes = 1L, no = parallel::detectCores() ) ) } train_x <- model.matrix( ~ -1 + ., dataset[, .SD, .SDcols = feature_cols] ) train_y <- factor(as.integer(dataset[, get("diabetes")]) - 1L) options("mlexperiments.bayesian.max_init" = 10L) fold_list <- splitTools::create_folds( y = train_y, k = 3, type = "stratified", seed = seed ) # ########################################################################### # %% TUNING # ########################################################################### ranger_bounds <- list( num.trees = c(100L, 1000L), mtry = c(2L, 9L), min.node.size = c(1L, 20L), max.depth = c(1L, 40L), sample.fraction = c(0.3, 1.) ) optim_args <- list( iters.n = ncores, kappa = 3.5, acq = "ucb" ) # ########################################################################### # %% NESTED CV # ########################################################################### test_that( desc = "test nested cv, bayesian, binary - ranger", code = { ranger_optimizer <- mlexperiments::MLNestedCV$new( learner = mllrnrs::LearnerRanger$new(), strategy = "bayesian", fold_list = fold_list, k_tuning = 3L, ncores = ncores, seed = seed ) ranger_optimizer$parameter_bounds <- ranger_bounds ranger_optimizer$parameter_grid <- param_list_ranger ranger_optimizer$split_type <- "stratified" ranger_optimizer$optim_args <- optim_args ranger_optimizer$learner_args <- list(probability = TRUE, cat_vars = c("pregnant", "pedigree")) ranger_optimizer$predict_args <- list(prob = TRUE, positive = "1") ranger_optimizer$performance_metric_args <- list(positive = "1") ranger_optimizer$performance_metric <- mlexperiments::metric("auc") # set data ranger_optimizer$set_data( x = train_x, y = train_y ) cv_results <- ranger_optimizer$execute() expect_type(cv_results, "list") expect_equal(dim(cv_results), c(3, 8)) expect_true(inherits( x = ranger_optimizer$results, what = "mlexCV" )) } )