library(mlbench) data("DNA") dataset <- DNA |> data.table::as.data.table() |> na.omit() seed <- 123 feature_cols <- colnames(dataset)[160:180] param_list_lightgbm <- expand.grid( bagging_fraction = seq(0.6, 1, .2), feature_fraction = seq(0.6, 1, .2), min_data_in_leaf = seq(2, 10, 2), learning_rate = seq(0.1, 0.2, 0.1), num_leaves = seq(2, 20, 4), max_depth = -1L, verbose = -1L ) if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) { # on cran ncores <- 2L } else { ncores <- ifelse( test = parallel::detectCores() > 4, yes = 4L, no = ifelse( test = parallel::detectCores() < 2L, yes = 1L, no = parallel::detectCores() ) ) } train_x <- model.matrix( ~ -1 + ., dataset[, .SD, .SDcols = feature_cols] ) train_y <- as.integer(dataset[, get("Class")]) - 1L options("mlexperiments.bayesian.max_init" = 10L) options("mlexperiments.optim.lgb.nrounds" = 100L) options("mlexperiments.optim.lgb.early_stopping_rounds" = 10L) fold_list <- splitTools::create_folds( y = train_y, k = 3, type = "stratified", seed = seed ) # ########################################################################### # %% TUNING # ########################################################################### lightgbm_bounds <- list( bagging_fraction = c(0.2, 1), feature_fraction = c(0.2, 1), min_data_in_leaf = c(2L, 12L), learning_rate = c(0.1, 0.2), num_leaves = c(2L, 20L) ) optim_args <- list( iters.n = ncores, kappa = 3.5, acq = "ucb" ) # ########################################################################### # %% NESTED CV # ########################################################################### test_that( desc = "test nested cv, bayesian, multiclass - lightgbm", code = { lightgbm_optimizer <- mlexperiments::MLNestedCV$new( learner = mllrnrs::LearnerLightgbm$new( metric_optimization_higher_better = FALSE ), strategy = "bayesian", fold_list = fold_list, k_tuning = 3L, ncores = ncores, seed = seed ) lightgbm_optimizer$parameter_bounds <- lightgbm_bounds lightgbm_optimizer$parameter_grid <- param_list_lightgbm lightgbm_optimizer$split_type <- "stratified" lightgbm_optimizer$optim_args <- optim_args y_weights <- ifelse(train_y == 1, 0.8, ifelse(train_y == 2, 1.2, 1)) lightgbm_optimizer$learner_args <- list( objective = "multiclass", metric = "multi_logloss", num_class = 3, case_weights = y_weights ) lightgbm_optimizer$predict_args <- list(reshape = TRUE) lightgbm_optimizer$performance_metric <- mlexperiments::metric("bacc") # set data lightgbm_optimizer$set_data( x = train_x, y = train_y ) cv_results <- lightgbm_optimizer$execute() expect_type(cv_results, "list") expect_equal(dim(cv_results), c(3, 13)) expect_true(inherits( x = lightgbm_optimizer$results, what = "mlexCV" )) } )