* using log directory 'd:/RCompile/CRANincoming/R-devel/mixbox.Rcheck' * using R Under development (unstable) (2024-02-24 r85984 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 12.3.0 GNU Fortran (GCC) 12.3.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * checking for file 'mixbox/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'mixbox' version '1.2.3' * package encoding: UTF-8 * checking CRAN incoming feasibility ... [11s] Note_to_CRAN_maintainers Maintainer: 'Mahdi Teimouri ' * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking serialization versions ... OK * checking whether package 'mixbox' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking for future file timestamps ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking whether startup messages can be suppressed ... OK * checking use of S3 registration ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... [11s] OK * checking Rd files ... NOTE checkRd: (-1) sefm.Rd:47: Lost braces 47 | {{\code{bs}}}{\deqn{f_W(w\vert{\bold{\theta}}) = \frac {\sqrt{\frac{w}{\beta}}+\sqrt{\frac {\beta}{w}}}{2\sqrt{2\pi}\alpha w}\exp\Biggl\{-\frac {1}{2\alpha^2}\Bigl[\frac{w}{\beta}+\frac{\beta}{w}-2\Bigr]\Biggr\},} where \eqn{{\bold{\theta}}=(\alpha,\beta)^{\top}}. Herein \eqn{\alpha> 0} and \eqn{\beta> 0} are the first and second parameters of this family, respectively.} | ^ checkRd: (-1) sefm.Rd:47: Lost braces 47 | {{\code{bs}}}{\deqn{f_W(w\vert{\bold{\theta}}) = \frac {\sqrt{\frac{w}{\beta}}+\sqrt{\frac {\beta}{w}}}{2\sqrt{2\pi}\alpha w}\exp\Biggl\{-\frac {1}{2\alpha^2}\Bigl[\frac{w}{\beta}+\frac{\beta}{w}-2\Bigr]\Biggr\},} where \eqn{{\bold{\theta}}=(\alpha,\beta)^{\top}}. Herein \eqn{\alpha> 0} and \eqn{\beta> 0} are the first and second parameters of this family, respectively.} | ^ checkRd: (-1) sefm.Rd:49: Lost braces 49 | {{\code{burrii}}}{\deqn{f_W(w\vert {\bold{\theta}}) = \alpha \beta w^{-\beta-1} \bigl( 1+w^{-\beta} \bigr) ^{-\alpha-1},} where \eqn{w>0} and \eqn{{\bold{\theta}}=(\alpha, \beta)^{\top}}. Herein \eqn{\alpha> 0} and \eqn{\beta> 0} are the first and second parameters of this family, respectively.} | ^ checkRd: (-1) sefm.Rd:49: Lost braces 49 | {{\code{burrii}}}{\deqn{f_W(w\vert {\bold{\theta}}) = \alpha \beta w^{-\beta-1} \bigl( 1+w^{-\beta} \bigr) ^{-\alpha-1},} where \eqn{w>0} and \eqn{{\bold{\theta}}=(\alpha, \beta)^{\top}}. Herein \eqn{\alpha> 0} and \eqn{\beta> 0} are the first and second parameters of this family, respectively.} | ^ checkRd: (-1) sefm.Rd:51: Lost braces 51 | {{\code{chisq}}}{\deqn{ f_W(w\vert{{\theta}}) = \frac{2^{-\frac {\alpha}{2}}}{\Gamma\bigl(\frac{\alpha}{2}\bigr)} w^{\frac{\alpha}{2}-1}\exp\Bigl\{-\frac {w}{2} \Bigr\},}} where \eqn{w>0} and \eqn{{{\theta}}=\alpha}. Herein \eqn{\alpha> 0} is the degrees of freedom parameter of this family. | ^ checkRd: (-1) sefm.Rd:51: Lost braces 51 | {{\code{chisq}}}{\deqn{ f_W(w\vert{{\theta}}) = \frac{2^{-\frac {\alpha}{2}}}{\Gamma\bigl(\frac{\alpha}{2}\bigr)} w^{\frac{\alpha}{2}-1}\exp\Bigl\{-\frac {w}{2} \Bigr\},}} where \eqn{w>0} and \eqn{{{\theta}}=\alpha}. Herein \eqn{\alpha> 0} is the degrees of freedom parameter of this family. | ^ checkRd: (-1) sefm.Rd:53: Lost braces 53 | {\code{exp}}{\deqn{f_W(w\vert{{\theta}}) =\alpha \exp \bigl\{-\alpha w\bigr\},}} where \eqn{w>0} and \eqn{{{\theta}}=\alpha} where \eqn{\alpha> 0} is the rate parameter of this family. | ^ checkRd: (-1) sefm.Rd:55: Lost braces 55 | {\code{f}}{\deqn{ f_W(w\vert{\bold{\theta}}) = B^{-1}\Bigl(\frac {\alpha}{2}, \frac {\beta}{2}\Bigr)\Bigl( \frac {\alpha}{\beta} \Bigr)^{\frac {\alpha}{2}} w^{\frac {\alpha}{2}-1}\Bigl(1 + \alpha\frac {w}{\beta} \Bigr)^{-\left(\frac {\alpha+\beta}{2} \right)},}} where \eqn{w>0} and \eqn{B(.,.)} denotes the ordinary beta function. Herein \eqn{{\bold{\theta}}=(\alpha, \beta)^{\top}} where \eqn{\alpha> 0} and \eqn{\beta> 0} are the first and second degrees of freedom parameters of this family, respectively. | ^ checkRd: (-1) sefm.Rd:57: Lost braces 57 | {\code{gamma}}{\deqn{ f_W(w\vert{\bold{\theta}}) = \frac {\beta^{\alpha}}{\Gamma(\alpha)} \Bigl( \frac{w}{\beta}\Bigr)^{\alpha-1}\exp\bigl\{ - \beta w \bigr\},}} where \eqn{w>0} and \eqn{{\bold{\theta}}=(\alpha, \beta)^{\top}}. Herein \eqn{\alpha> 0} and \eqn{\beta> 0} are the shape and rate parameters of this family, respectively. | ^ checkRd: (-1) sefm.Rd:59: Lost braces 59 | {\code{gigaussian}}{\deqn{ f_W(w\vert{\bold{\theta}}) =\frac{1}{2{\cal{K}}_{\alpha}( \sqrt{\beta \delta})}\Bigl(\frac{\beta}{\delta}\Bigr)^{\alpha/2}w^{\alpha-1} \exp\biggl\{-\frac{\delta}{2w}-\frac{\beta w}{2}\biggr\},}} where \eqn{{\cal{K}}_{\alpha}(.)} denotes the modified Bessel function of the third kind with order | ^ checkRd: (-1) sefm.Rd:63: Lost braces 63 | {\code{igamma}}{\deqn{ f_W(w\vert{\bold{\theta}}) = \frac{1}{\Gamma(\alpha)} \Bigl( \frac{w}{\beta}\Bigr)^{-\alpha-1}\exp\Bigl\{ - \frac{\beta}{w} \Bigr\},}} where \eqn{w>0} and \eqn{{\bold{\theta}}=(\alpha, \beta)^{\top}}. Herein \eqn{\alpha> 0} and \eqn{\beta> 0} are the shape and scale parameters of this family, respectively. | ^ checkRd: (-1) sefm.Rd:65: Lost braces 65 | {\code{igaussian}}{\deqn{ f_W(w\vert{\bold{\theta}}) =\sqrt{\frac{\beta}{2 \pi w^3}} \exp\biggl\{-\frac{\beta(w - \alpha)^2}{2\alpha^2 w}\biggr\},}} where \eqn{w>0} and \eqn{{\bold{\theta}}=(\alpha, \beta)^{\top}}. Herein \eqn{\alpha>0} and \eqn{\beta> 0} are the first (mean) and second (shape) parameters of this family, respectively. | ^ checkRd: (-1) sefm.Rd:67: Lost braces 67 | {\code{lidley}}{\deqn{f_W(w\vert{{\theta}}) =\frac{\alpha^2}{\alpha+1} (1+w)\exp \bigl\{-\alpha w\bigr\},}} where \eqn{w>0} and \eqn{{{\theta}}=\alpha} where \eqn{\alpha> 0} is the only parameter of this family. | ^ checkRd: (-1) sefm.Rd:69: Lost braces 69 | {\code{loglog}}{\deqn{ f_W(w\vert{\bold{\theta}}) =\frac{\alpha}{ \beta^{\alpha}} w^{\alpha-1}\left[ \Bigl( \frac {w}{\beta}\Bigr)^\alpha +1\right] ^{-2},}} where \eqn{w>0} and \eqn{{\bold{\theta}}=(\alpha, \beta)^{\top}}. Herein \eqn{\alpha> 0} and \eqn{\beta> 0} are the shape and scale (median) parameters of this family, respectively. | ^ checkRd: (-1) sefm.Rd:71: Lost braces 71 | {\code{lognorm}}{\deqn{ f_W(w\vert{\bold{\theta}}) = \bigl(\sqrt{2\pi} \sigma w \bigr)^{-1} \exp\biggl\{ -\frac{1}{2}\left( \frac {\log w - \mu}{\sigma}\right) ^2\biggr\},}} where \eqn{w>0} and \eqn{{\bold{\theta}}=(\mu, \sigma)^{\top}}. Herein \eqn{-\infty<\mu<+\infty} and \eqn{\sigma> 0} are the first and second parameters of this family, respectively. | ^ checkRd: (-1) sefm.Rd:73: Lost braces 73 | {\code{lomax}}{\deqn{ f_W(w\vert{\bold{\theta}}) = \alpha \beta \bigl( 1+\beta w\bigr)^{-(\alpha+1)},}} where \eqn{w>0} and \eqn{{\bold{\theta}}=(\alpha, \beta)^{\top}}. Herein \eqn{\alpha>0} and \eqn{\beta> 0} are the shape and rate parameters of this family, respectively. | ^ checkRd: (-1) sefm.Rd:75: Lost braces 75 | {\code{rayleigh}}{\deqn{ f_W(w\vert{{\theta}}) = 2\frac {w}{\beta^2}\exp\biggl\{ -\Bigl( \frac {w}{\beta}\Bigr)^2 \biggr\},}} where \eqn{w>0} and \eqn{{{\theta}}=\beta}. Herein \eqn{\beta>0} is the scale parameter of this family. | ^ checkRd: (-1) sefm.Rd:77: Lost braces 77 | {\code{weibull}}{\deqn{ f_W(w\vert{\bold{\theta}}) = \frac {\alpha}{\beta}\Bigl( \frac {w}{\beta} \Bigr)^{\alpha - 1}\exp\biggl\{ -\Bigl( \frac{w}{\beta}\Bigr)^\alpha \biggr\},}} where \eqn{w>0} and \eqn{{\bold{\theta}}=(\alpha, \beta)^{\top}}. Herein \eqn{\alpha>0} and \eqn{\beta> 0} are the shape and scale parameters of this family, respectively. | ^ * checking Rd metadata ... OK * checking Rd line widths ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking examples ... OK * checking PDF version of manual ... [14s] OK * checking HTML version of manual ... OK * DONE Status: 1 NOTE