test_that("functions in predict.R are ok", { predict_coef(exampleModels$WL_ibm, maxh = 3) ## exact method, without xcond dist <- multiStep_dist(exampleModels$WL_ibm, maxh = 3) tfpdf <- dist(3, "pdf", xcond = c(560, 600)) # xcond is argument to 'dist' here tfcdf <- dist(3, "cdf", xcond = c(560, 600)) expect_message(dist(3, "cdf", xcond = c(300, 560, 600)), "using the last ") expect_error(dist(3, "cdf", xcond = c(600)), "length\\(xcond\\) must be >= maximal AR order") ## currently 2nd argument is anything besides "pdf" and "cdf" ## for the method above. (looks like *:TODO:* - see the method with "N = ..." below dist(3, "model", xcond = c(560, 600)) ## use a simulation method with N = 1000 tf <- multiStep_dist(exampleModels$WL_ibm, maxh = 3, N = 1000, xcond = c(560, 600)) tfpdf <- tf(3, "pdf") tfcdf <- tf(3, "cdf") tf(3, "location") tf(3, "sd") tf(3, "variance") tf(3, "skewness") tf(3, "kurtosis") tf(3, "summary") tf(3, function(x) sum(x)/length(x)) expect_error(tf(3, pi), "Argument 'what' is of incorrect type") ## get the raw data tfs <- tf(1, "sampled") apply(tfs, 1, mean) # location for lags from 1 to maxh (here 3) ## the exact method may also be used with fixed xcond: tfe <- multiStep_dist(exampleModels$WL_ibm, maxh = 3, xcond = c(560, 600)) ## get pdf and cdf for horizon 3 tfepdf <- tfe(3, "pdf") tfecdf <- tfe(3, "cdf") invisible(tfe(3, "model")) tfe_mes <- multiStep_dist(exampleModels$WL_ibm, maxh = 3, xcond = c(300, 560, 600)) tfe_err <- multiStep_dist(exampleModels$WL_ibm, maxh = 3, xcond = c(600)) expect_message(tfe_mes(3, "pdf"), "using the last ") expect_error(tfe_err(3, "pdf"), "length\\(xcond\\) must be >= maximal AR order") }) test_that("functions for 'predict' work", { #extend_index(rbind(c(1,2),c(3,4)), g = 2) m <- new("MixARGaussian", prob = c(.5 ,.5), scale = c(1,2), arcoef = list(-0.5, 1.1)) predict_coef(m, maxh = 2) })