context("Test saenet") test_that("saenet works", { library(mice) mids <- mice(miselect.df, m = 5, printFlag = FALSE) dfs <- lapply(1:5, function(i) complete(mids, action = i)) x <- list() y <- list() for (i in 1:5) { x[[i]] <- as.matrix(dfs[[i]][, paste0("X", 1:20)]) y[[i]] <- dfs[[i]]$Y } weights <- 1 - rowMeans(is.na(miselect.df)) pf <- c(0, rep(1, 19)) adWeight <- c(0, rep(1, 19)) expect_silent({ fit <- saenet(x, y, pf, adWeight, weights, family = "binomial", nlambda = 50)}) }) test_that("cv.saenet works", { library(mice) mids <- mice(miselect.df, m = 5, printFlag = FALSE) dfs <- lapply(1:5, function(i) complete(mids, action = i)) x <- list() y <- list() for (i in 1:5) { x[[i]] <- as.matrix(dfs[[i]][, paste0("X", 1:20)]) y[[i]] <- dfs[[i]]$Y } weights <- 1 - rowMeans(is.na(miselect.df)) pf <- rep(1, 20) adWeight <- rep(1, 20) expect_silent({ fit <- cv.saenet(x, y, pf, adWeight, weights, family = "binomial", nlambda = 50)}) })