test_that("multi-state: distribution functions, classic interface are consistent", { Tint <- c(1,20) Q <- array(NA_real_, dim=c(3,3,2)) Q[,,1] <- matrix( c( -0.2, 0 , 0.2 , 0 ,-0.05, 0.05, 0 , 0, 0 ), 3, 3, byrow = TRUE ) Q[,,2] <- matrix( c( -0.05, 0 , 0.05 , 0 ,-0.05, 0.05, 0 , 0, 0 ), 3, 3, byrow = TRUE ) pi <- c(0.75,0.25,0) abs <- c(0,0,1) t <- seq(0, 100, by=0.1) my_ch <- chmstate(t, Tint, Q, pi, abs) my_p <- pmstate(t, Tint, Q, pi, abs) my_s <- smstate(t, Tint, Q, pi, abs) my_d <- dmstate(t, Tint, Q, pi, abs) expect_equal_tol( my_p+my_s, 1, "test if S and F are consistent" ) expect_equal_tol( exp(-my_ch), my_s, "test if cumhaz and S are consistent" ) }) test_that("multi-state: test functions for case of exponential distribution", { Tint <- c(0, 20) Q_ <- matrix( c( -0.3, 0.2, 0.1, 0 ,-0.5, 0.5, 0 , 0 , 0 ), 3, 3, byrow = TRUE ) Q <- array(NA_real_, dim=c(3,3,2)) Q[,,1] <- Q_ Q[,,2] <- Q_ pi <- c(1,0,0) abs <- c(0,1,1) t <- seq(0, 40, by=0.1) rate <- -Q[1,1,1] my_ch <- chmstate(t, Tint, Q, pi, abs) my_h <- hmstate(t, Tint, Q, pi, abs) my_p <- pmstate(t, Tint, Q, pi, abs) my_s <- smstate(t, Tint, Q, pi, abs) my_d <- dmstate(t, Tint, Q, pi, abs) expect_equal_tol( my_ch, t*rate, tol=1e-7, "cumhaz" ) expect_equal_tol( my_d, dexp(t, rate=rate), tol=.Machine$double.eps*2, "density" ) expect_equal_tol( my_h, rate, tol=1e-7, "hazards" ) expect_equal_tol( my_p, pexp(t, rate=rate), tol=1e-7, "cdf" ) expect_equal_tol( my_s, 1-pexp(t, rate=rate), tol=1e-7, "quant" ) }) test_that("Functions and manual calculation are consistent", { Q1 <- matrix(c( -1, 0.5, 0.5, 0, 1, -2, 1, 0, 1, 1, -3, 1, 0, 0, 0, 0 ), 4,4, byrow = TRUE) Q2 <- matrix(c( -1, 0.5, 0.5, 0, 2, -2, 0, 0, 1, 1, -3, 1, 0, 0, 0, 0 ), 4,4, byrow = TRUE) * 3 Q <- array(c(Q1, Q2), dim=c(4,4,2)) t <- c(0,5) test <- multistate_functions( t = t, Q = Q, pi = c(1,0,0,0), abs = c(0L, 0L, 0L, 1L) ) x <- seq(0, 15, by=0.1) test$d(x) p1 <- test$p(x) p2 <- sapply(x, \(xx){integrate(test$d, 0, xx)$value}) expect_lt(max(abs(p1-p2)), 1e-4) h1 <- test$h(x) h2 <- test$d(x)/test$s(x) expect_lt(max(abs(h1-h2)), 2* .Machine$double.eps) })