# First specify each imputation model as a 'mimod' object, suppressing the ## message mimod_bmi7 <- checkModSpec( formula="bmi7~matage+I(matage^2)+mated+pregsize", family="gaussian(identity)", data=bmi, message=FALSE) mimod_pregsize <- checkModSpec( formula="pregsize~bmi7+matage+I(matage^2)+mated", family="binomial(logit)", data=bmi, message=FALSE) # Check the proposed 'mice' options when specifying more than one imputation ## model (suppressing the plot) res1<-evaluate_promise(proposeMI(mimodobj=list(mimod_bmi7,mimod_pregsize), data=bmi, plot = FALSE)) #Trim output for test purposes test_that("proposeMI suggests correct mice options and creates expected object", { expect_equal(substr(trimws(paste0(gsub("\n","",res1$output), collapse=" "), "right"),1,110), "Based on your proposed imputation model and dataset, your mice() call should be as follows: mice(data = bmi ,") expect_equal(res1$result$m,41) expect_equal(res1$result$method,list("norm", "logreg")) expect_equal(paste0(res1$result$formulas),c("bmi7 ~ matage + I(matage^2) + mated + pregsize", "pregsize ~ bmi7 + matage + I(matage^2) + mated")) } )