library('mfx') ### Name: probitmfx ### Title: Marginal effects for a probit regression. ### Aliases: probitmfx print.probitmfx ### ** Examples # simulate some data set.seed(12345) n = 1000 x = rnorm(n) # binary outcome y = ifelse(pnorm(1 + 0.5*x + rnorm(n))>0.5, 1, 0) data = data.frame(y,x) probitmfx(formula=y~x, data=data)