library('mfx') ### Name: betamfx ### Title: Marginal effects for a beta regression. ### Aliases: betamfx print.betamfx ### ** Examples # simulate some data set.seed(12345) n = 1000 x = rnorm(n) # beta outcome y = rbeta(n, shape1 = plogis(1 + 0.5 * x), shape2 = (abs(0.2*x))) # use Smithson and Verkuilen correction y = (y*(n-1)+0.5)/n data = data.frame(y,x) betamfx(y~x|x, data=data)