context("Checking utility functions") test_that("Diag() works correctly", { x1 <- Diag(c("a", "b")) x2 <- Diag(c(1, 2, 3, 4)) x3 <- Diag(c("a", 10, "c")) expect_identical(x1, matrix(c("a", "0", "0", "b"), ncol=2)) expect_identical(x2, matrix(c(1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 4), ncol=4)) expect_identical(x3, matrix(c("a", "0", "0", "0", "10", "0", "0", "0", "c"), ncol=3)) }) test_that("is.pd() works correctly", { x1 <- diag(1,4) x2 <- matrix(c(1,2,2,1), ncol=2) x3 <- diag(1,4) x3[1,2] <- x3[2,1] <- NA expect_true(is.pd(x1)) expect_false(is.pd(x2)) expect_identical(is.pd(x3), NA) expect_identical(is.pd(list(x1, x2, x3)), c(TRUE, FALSE, NA)) }) test_that("as.mxMatrix() works correctly", { x1 <- matrix(c(1, "2*a", "3@b", 4), ncol=2, nrow=2) x1.labels <- c(NA, "a", "b", NA) x1.values <- 1:4 x1.free <- c(FALSE, TRUE, FALSE, FALSE) x2 <- mxMatrix(type="Full", nrow=2, ncol=2, free=x1.free, values=x1.values, labels=x1.labels, name="x1") expect_identical(x2, as.mxMatrix(x1)) }) test_that("vec2symMat() works correctly", { x1 <- vec2symMat(1:10) x2 <- vec2symMat(1:10, byrow=TRUE) x3 <- vec2symMat(1:10, diag=FALSE) x4 <- vec2symMat(1:10, diag=FALSE, byrow=TRUE) expect_true(isSymmetric(x1)) expect_true(isSymmetric(x2)) expect_true(isSymmetric(x3)) expect_true(isSymmetric(x4)) expect_identical(x1, matrix(c(1,2,3,4, 2,5,6,7, 3,6,8,9, 4,7,9,10), ncol=4)) expect_identical(x2, matrix(c(1,2,4,7, 2,3,5,8, 4,5,6,9, 7,8,9,10), ncol=4)) expect_identical(x3, matrix(c(1,1,2,3,4, 1,1,5,6,7, 2,5,1,8,9, 3,6,8,1,10, 4,7,9,10,1), ncol=5)) expect_identical(x4, matrix(c(1,1,2,4,7, 1,1,3,5,8, 2,3,1,6,9, 4,5,6,1,10, 7,8,9,10,1), ncol=5)) }) test_that("bdiagMat() works correctly", { x1 <- bdiagMat( list(matrix(1:4,nrow=2,ncol=2), matrix(5:6,nrow=1,ncol=2)) ) x2 <- bdiagMat( list(matrix(letters[1:4],nrow=2,ncol=2), matrix(letters[5:6],nrow=1,ncol=2)) ) expect_identical(x1, matrix(c(1, 3, 0, 0, 2, 4, 0, 0, 0, 0, 5, 6), ncol=4, nrow=3, byrow=TRUE)) expect_identical(x2, matrix(c("a", "c", "0", "0", "b", "d", "0", "0", "0", "0", "e", "f"), ncol=4, nrow=3, byrow=TRUE)) }) test_that("list2matrix() works correctly", { x1 <- matrix(c(1,0.5,0.4,0.5,1,0.2,0.4,0.2,1), ncol=3) x2 <- matrix(c(1,0.4,NA,0.4,1,NA,NA,NA,NA), ncol=3) expect_identical(list2matrix(list(x1, x2), diag=FALSE), matrix(c(0.5, 0.4, 0.2, 0.4, NA, NA), byrow=TRUE, nrow=2, ncol=3, dimnames=list(NULL, c("x2_x1", "x3_x1", "x3_x2")))) expect_identical(list2matrix(list(x1, x2), diag=TRUE), matrix(c(1, 0.5, 0.4, 1, 0.2, 1, 1, 0.4, NA, 1, NA, NA), byrow=TRUE, nrow=2, ncol=6, dimnames=list(NULL, c("x1_x1", "x2_x1", "x3_x1", "x2_x2", "x3_x2", "x3_x3")))) dimnames(x1) <- list( c("x","y","z"), c("x","y","z") ) dimnames(x2) <- list( c("x","y","z"), c("x","y","z") ) expect_identical(list2matrix(list(x1, x2), diag=FALSE), matrix(c(0.5, 0.4, 0.2, 0.4, NA, NA), byrow=TRUE, nrow=2, ncol=3, dimnames=list(NULL, c("y_x", "z_x", "z_y")))) expect_identical(list2matrix(list(x1, x2), diag=TRUE), matrix(c(1, 0.5, 0.4, 1, 0.2, 1, 1, 0.4, NA, 1, NA, NA), byrow=TRUE, nrow=2, ncol=6, dimnames=list(NULL, c("x_x", "y_x", "z_x", "y_y", "z_y", "z_z")))) x3 <- matrix(c(1,0.5,0.5,1), ncol=2) x4 <- matrix(c(1,0.4,0.4,1), ncol=2) expect_identical(list2matrix(list(x3, x4), diag=FALSE), matrix(c(0.5, 0.4), byrow=TRUE, nrow=2, ncol=1, dimnames=list(NULL, c("x2_x1")))) expect_identical(list2matrix(list(x3, x4), diag=TRUE), matrix(c(1, 0.5, 1, 1, 0.4, 1), byrow=TRUE, nrow=2, ncol=3, dimnames=list(NULL, c("x1_x1", "x2_x1", "x2_x2")))) dimnames(x3) <- list( c("x","y"), c("x","y") ) dimnames(x4) <- list( c("x","y"), c("x","y") ) expect_identical(list2matrix(list(x3, x4), diag=FALSE), matrix(c(0.5, 0.4), byrow=TRUE, nrow=2, ncol=1, dimnames=list(NULL, c("y_x")))) expect_identical(list2matrix(list(x3, x4), diag=TRUE), matrix(c(1, 0.5, 1, 1, 0.4, 1), byrow=TRUE, nrow=2, ncol=3, dimnames=list(NULL, c("x_x", "y_x", "y_y")))) }) test_that("lavaan2RAM() works correctly", { ## Multiple regression with 2 groups model1 <- "y ~ 1 + c(b1, b2)*x1 + c(b3, b4)*x2 fn1 := b1 + b2 b3 == b4" model2 <- list("1"="y ~ 1 + b1*x1 + b3*x2 fn1 := b1 + b2 b3 == b4", "2"="y ~ 1 + b2*x1 + b4*x2") RAM1 <- lavaan2RAM(model1, ngroups=2) RAM2 <- lapply(model2, lavaan2RAM) names(RAM1) <- c("1", "2") expect_identical(RAM1, RAM2) ## CFA with 2 groups model3 <- "f =~ c(a, a)*x1 + c(b1, b2)*x2 + c(c1, c2)*x3 + c(d1, d2)*x4" model4 <- list("1"="f =~ a*x1 + b1*x2 + c1*x3 + d1*x4", "2"="f =~ a*x1 + b2*x2 + c2*x3 + d2*x4") RAM3 <- lavaan2RAM(model3, ngroups=2) RAM4 <- lapply(model4, lavaan2RAM) names(RAM3) <- c("1", "2") expect_identical(RAM3, RAM4) ## Single group multiple regression model5 <- "y ~ 1 + b1*x1 + b2*x2" RAM5a <- lavaan2RAM(model5) ## RAM5b: hard-coded RAM5b <- list(A = structure(c("0", "0", "0", "0.1*b1", "0", "0", "0.1*b2", "0", "0"), .Dim = c(3L, 3L), .Dimnames = list(c("y", "x1", "x2"), c("y", "x1", "x2"))), S = structure(c("0.5*yWITHy", "0", "0", "0", "0.5*x1WITHx1", "0*x1WITHx2", "0", "0*x1WITHx2", "0.5*x2WITHx2"), .Dim = c(3L, 3L), .Dimnames = list(c("y", "x1", "x2"), c("y", "x1", "x2"))), F = structure(c(1, 0, 0, 0, 1, 0, 0, 0, 1), .Dim = c(3L, 3L), .Dimnames = list(c("y", "x1", "x2"), c("y", "x1", "x2"))), M = structure(c("0*ymean", "0", "0"), .Dim = c(1L, 3L), .Dimnames = list("1", c("y", "x1", "x2")))) expect_identical(RAM5a, RAM5b) }) test_that("as.symMatrix() works correctly", { A1 <- matrix(c(1:3, "a", "*b", "6*c", 7:9), ncol=3, nrow=3) A2 <- matrix(c(1:3, "a", "b", "c", 7:9), ncol=3, nrow=3) A3 <- as.symMatrix(A1) expect_identical(A2, A3) B1 <- diag(4) B2 <- Diag(rep("1", 4)) B3 <- as.symMatrix(B1) expect_identical(B2, B3) model <- "y ~ b*m + c*x m ~ a*x x ~~ 1*x m ~~ Errm*m y ~~ Erry*y x ~ meanx*1 m ~ interceptm*1 y ~ intercepty*1" RAM1 <- lavaan2RAM(model, obs.variables =c("y", "m", "x")) RAM2 <- RAM1 RAM2$A[1, 2] <- "b" RAM2$A[1, 3] <- "c" RAM2$A[2, 3] <- "a" RAM2$S[1, 1] <- "Erry" RAM2$S[2, 2] <- "Errm" RAM2$M[1, 1] <- "intercepty" RAM2$M[1, 2] <- "interceptm" RAM2$M[1, 3] <- "meanx" RAM2$F[] <- as.character(RAM2$F) RAM3 <- as.symMatrix(RAM1) expect_identical(RAM2, RAM3) }) context("Checking functions calculating effect sizes") test_that("smdMTS() works correctly", { ## Means m <- c(5,NA,7,9,NA) ## Sample variances v <- c(10,0,11,12,0) ## Sample sizes n <- c(50,0,52,53,0) index <- !is.na(m) ## index.y: index on comparisons against the first group index.y <- index[-1] ## Comparing against the first group x1 <- smdMTS(m=m, v=v, n=n, homogeneity="variance", bias.adjust=TRUE, all.comparisons=FALSE, list.output=TRUE, lavaan.output=FALSE) x2 <- smdMTS(m=m[index], v=v[index], n=n[index], homogeneity="variance", bias.adjust=TRUE, all.comparisons=FALSE, list.output=TRUE, lavaan.output=FALSE) ## Check NA in y expect_identical(!index.y, unname(is.na(x1$y))) ## Check NA in V expect_identical(TRUE, all(is.na(x1$V[!index.y, !index.y]))) ## Check the content in y expect_identical(unname(x1$y[!is.na(x1$y)]), unname(x2$y)) ## Check the content in V expect_identical(unname(x1$V[!is.na(x1$y), !is.na(x1$y)]), unname(x2$V)) ## Conducting all comparisons x3 <- suppressWarnings( smdMTS(m=m, v=v, n=n, homogeneity="none", bias.adjust=FALSE, all.comparisons=TRUE, list.output=TRUE, lavaan.output=FALSE) ) x4 <- suppressWarnings( smdMTS(m=m[index], v=v[index], n=n[index], homogeneity="none", bias.adjust=FALSE, all.comparisons=TRUE, list.output=TRUE, lavaan.output=FALSE) ) ## index for y k <- length(index) index.y <- rep(NA, k*(k-1)/2) p <- 1 for (i in 1:(k-1)) { for (j in (i+1):k) { index.y[p] <- index[i]&index[j] p <- p+1 } } ## Check NA in y expect_identical(!index.y, unname(is.na(x3$y))) ## Check NA in y expect_identical(TRUE, all(is.na(x3$V[!index.y, !index.y]))) ## Check the content in y expect_identical(unname(x3$y[!is.na(x3$y)]), unname(x4$y)) ## Check the content in V expect_identical(unname(x3$V[!is.na(x3$y), !is.na(x3$y)]), unname(x4$V)) }) test_that("smdMES() works correctly", { ## Sample means of the first group m1 <- c(4, NA, 5) ## Sample means of the second group m2 <- c(5, NA, 6) index <- !is.na(m1) ## Sample covariance matrices V1 <- V2 <- matrix(NA, ncol=3, nrow=3) V1[index, index] <- c(3,2,2,3) V2[index, index] <- c(3.5,2.1,2.1,3.5) ## Sample size in Group 1 n1 <- 20 ## Sample size in Group 2 n2 <- 25 ## Assuming homogeneity of covariance matrix x1 <- smdMES(m=m1, m2=m2, V1=V1, V2=V2, n1=n1, n2=n2, homogeneity="covariance", bias.adjust=TRUE, list.output=TRUE, lavaan.output=FALSE) x2 <- smdMES(m=m1[index], m2=m2[index], V1=V1[index, index], V2=V2[index, index], n1=n1, n2=n2, homogeneity="covariance", bias.adjust=TRUE, list.output=TRUE, lavaan.output=FALSE) ## Check NA in y expect_identical(!index, unname(is.na(x1$y))) ## Check NA in V expect_identical(TRUE, all(is.na(x1$V[!index, !index]))) ## Check the content in y expect_identical(unname(x1$y[!is.na(x1$y)]), unname(x2$y)) ## Check the content in V expect_identical(unname(x1$V[!is.na(x1$y), !is.na(x1$y)]), unname(x2$V)) ## Without assuming homogeneity of covariance matrix x3 <- smdMES(m=m1, m2=m2, V1=V1, V2=V2, n1=n1, n2=n2, homogeneity="none", bias.adjust=FALSE, list.output=TRUE, lavaan.output=FALSE) x4 <- smdMES(m=m1[index], m2=m2[index], V1=V1[index, index], V2=V2[index, index], n1=n1, n2=n2, homogeneity="none", bias.adjust=FALSE, list.output=TRUE, lavaan.output=FALSE) ## Check NA in y expect_identical(!index, unname(is.na(x3$y))) ## Check NA in V expect_identical(TRUE, all(is.na(x3$V[!index, !index]))) ## Check the content in y expect_identical(unname(x3$y[!is.na(x3$y)]), unname(x4$y)) ## Check the content in V expect_identical(unname(x3$V[!is.na(x3$y), !is.na(x3$y)]), unname(x4$V)) }) context("Checking OSMASEM functions") test_that("Cor2DataFrame() works correctly", { ## No moderators my.df1 <- Cor2DataFrame(Nohe15A1$data, Nohe15A1$n) my.df2 <- Cor2DataFrame(Nohe15A1, append.vars=FALSE) expect_equal(my.df1, my.df2, tolerance = .001) ## Append additional variables my.df1$data <- data.frame(my.df1$data, RelW1=Nohe15A1$RelW1, RelW2=Nohe15A1$RelW2, RelS1=Nohe15A1$RelS1, RelS2=Nohe15A1$RelS2, FemalePer=Nohe15A1$FemalePer, Publication=Nohe15A1$Publication, Lag=Nohe15A1$Lag, Country=Nohe15A1$Country, check.names=FALSE) my.df2 <- Cor2DataFrame(Nohe15A1, append.vars=TRUE) expect_equal(my.df1, my.df2, tolerance = .001) }) test_that("checkRAM() works correctly", { ## Checking A ## OK A1 <- matrix(c("0", "0", "0", "1*a", "0", "0", "1*b", "1*c", "0"), nrow=3, ncol=3, byrow=TRUE) expect_silent(checkRAM(Amatrix=A1)) expect_silent(checkRAM(Amatrix=as.mxMatrix(A1))) ## Diagonals are not zero A2 <- matrix(c("0", "0", "0", "1*a", "1", "0", "1*b", "1*c", "0"), nrow=3, ncol=3, byrow=TRUE) expect_warning(checkRAM(Amatrix=A2)) expect_warning(checkRAM(Amatrix=as.mxMatrix(A2))) A3 <- matrix(c("0", "0", "0", "1*a", "0*d", "0", "1*b", "1*c", "0"), nrow=3, ncol=3, byrow=TRUE) expect_warning(checkRAM(Amatrix=A3)) expect_warning(checkRAM(Amatrix=as.mxMatrix(A3))) ## Non-recursive model A4 <- matrix(c("0", "0*d", "0", "1*a", "0", "0", "1*b", "1*c", "0"), nrow=3, ncol=3, byrow=TRUE) expect_warning(checkRAM(Amatrix=A4)) expect_warning(checkRAM(Amatrix=as.mxMatrix(A4))) ## Checking S ## OK S1 <- matrix(c("1", "0", "0", "0", "0*a", "0*b", "0", "0*b", "0*c"), nrow=3, ncol=3, byrow=TRUE) expect_silent(checkRAM(Smatrix=S1, cor.analysis=TRUE)) expect_silent(checkRAM(Smatrix=as.mxMatrix(S1), cor.analysis=TRUE)) expect_silent(checkRAM(Smatrix=S1, cor.analysis=FALSE)) expect_silent(checkRAM(Smatrix=as.mxMatrix(S1), cor.analysis=FALSE)) ## Not symmetric in labels S2 <- matrix(c("1", "0", "0", "0", "0*a", "0*b1", "0", "0*b2", "0*c"), nrow=3, ncol=3, byrow=TRUE) expect_warning(checkRAM(Smatrix=S2, cor.analysis=TRUE)) expect_warning(checkRAM(Smatrix=as.mxMatrix(S2), cor.analysis=TRUE)) expect_warning(checkRAM(Smatrix=S2, cor.analysis=FALSE)) expect_warning(checkRAM(Smatrix=as.mxMatrix(S2), cor.analysis=FALSE)) ## Not symmetric in values S3 <- matrix(c("1", "0", "0", "1", "0*a", "0*b", "0", "0*b", "0*c"), nrow=3, ncol=3, byrow=TRUE) expect_warning(checkRAM(Smatrix=S3, cor.analysis=TRUE)) expect_warning(checkRAM(Smatrix=as.mxMatrix(S3), cor.analysis=TRUE)) expect_warning(checkRAM(Smatrix=S3, cor.analysis=FALSE)) expect_warning(checkRAM(Smatrix=as.mxMatrix(S3), cor.analysis=FALSE)) ## Not symmetric in free parameters S4 <- matrix(c("1", "0", "0", "1*d", "0*a", "0*b", "0", "0*b", "0*c"), nrow=3, ncol=3, byrow=TRUE) expect_warning(checkRAM(Smatrix=S4, cor.analysis=TRUE)) expect_warning(checkRAM(Smatrix=as.mxMatrix(S4), cor.analysis=TRUE)) expect_warning(checkRAM(Smatrix=S4, cor.analysis=FALSE)) expect_warning(checkRAM(Smatrix=as.mxMatrix(S4), cor.analysis=FALSE)) ## Checking both A and S ## OK expect_silent(checkRAM(A=A1, S=S1, cor.analysis=TRUE)) ## Variance of the IV is a free parameter S5 <- matrix(c("1*Err_IV", "0", "0", "0", "0*a", "0*b", "0", "0*b", "0*c"), nrow=3, ncol=3, byrow=TRUE) expect_warning(checkRAM(Amatrix=A1, Smatrix=S5, cor.analysis=TRUE)) ## OK when S is for a covariance structure expect_silent(checkRAM(Amatrix=A1, Smatrix=S5, cor.analysis=FALSE)) ## Variance of the IV is not fixed at 1 S6 <- matrix(c("0", "0", "0", "0", "0*a", "0*b", "0", "0*b", "0*c"), nrow=3, ncol=3, byrow=TRUE) expect_warning(checkRAM(Amatrix=A1, Smatrix=S6, cor.analysis=TRUE)) ## OK when S is for a covariance structure (fewer checking) expect_silent(checkRAM(Amatrix=A1, Smatrix=S6, cor.analysis=FALSE)) }) test_that("create.Tau2() works correctly", { ## Symmetric variance component T0 <- create.Tau2(no.var=6, RE.type="Symm", Transform="expLog", RE.startvalues=0.01) vecTau0 <- create.mxMatrix(paste0(log(0.01), "*Tau1_", seq(6)), ncol=1, nrow=6, name="vecTau1") Cor0 <- create.mxMatrix(vechs(outer(seq(6), seq(6), function(x,y) paste0("0*Cor_", x, "_", y))), type="Stand", ncol=6, nrow=6, lbound=-0.99, ubound=0.99, name="Cor") expect_identical(T0$vecTau1, vecTau0) expect_identical(T0$Cor, Cor0) ## Diagonal variance component T1 <- create.Tau2(no.var=6, RE.type="Diag", Transform="expLog", RE.startvalues=0.01) vecTau1 <- create.mxMatrix(paste0(log(0.01), "*Tau1_", seq(6)), ncol=1, nrow=6, name="vecTau1") Cor1 <- as.mxMatrix(diag(6), name="Cor") expect_identical(T1$vecTau1, vecTau1) expect_identical(T1$Cor, Cor1) ## Zero variance component T2 <- create.Tau2(no.var=6, RE.type="Zero", Transform="expLog", RE.startvalues=0.01) vecTau2 <- create.mxMatrix(rep(log(0),6), type="Full", ncol=1, nrow=6, name="vecTau1") Cor2 <- as.mxMatrix(diag(6), name="Cor") expect_identical(T2$vecTau1, vecTau2) expect_identical(T2$Cor, Cor2) ## User specified diagonal matrix RE.User <- diag(c(TRUE, TRUE, FALSE, FALSE, TRUE, TRUE)) T3 <- create.Tau2(no.var=6, RE.type="User", Transform="expLog", RE.User=RE.User, RE.startvalues=0.01) vecTau3 <- paste0(log(0.01), "*Tau1_", seq(6)) ## Fixed a bug that the values should be log(0) rather than 0 when they are fixed parameters. vecTau3[diag(RE.User)==FALSE] <- log(0) vecTau3 <- create.mxMatrix(vecTau3, ncol=1, nrow=6, name="vecTau1") Cor3 <- outer(seq(6), seq(6), function(x,y) paste0("0*Cor_", x, "_", y)) Cor3[RE.User==FALSE] <- 0 Cor3 <- create.mxMatrix(vechs(Cor3), type="Stand", ncol=6, nrow=6, lbound=-0.99, ubound=0.99, name="Cor") expect_identical(T3$vecTau1, vecTau3) expect_identical(T3$Cor, Cor3) ## User specified symmetric matrix RE.User <- diag(c(TRUE, TRUE, FALSE, FALSE, TRUE, TRUE)) RE.User[2,1] <- RE.User[1,2] <- TRUE T4 <- create.Tau2(no.var=6, RE.type="User", Transform="expLog", RE.User=RE.User, RE.startvalues=0.01) vecTau4 <- paste0(log(0.01), "*Tau1_", seq(6)) vecTau4[diag(RE.User)==FALSE] <- log(0) vecTau4 <- create.mxMatrix(vecTau4, ncol=1, nrow=6, name="vecTau1") Cor4 <- outer(seq(6), seq(6), function(x,y) paste0("0*Cor_", x, "_", y)) Cor4[RE.User==FALSE] <- 0 Cor4 <- create.mxMatrix(vechs(Cor4), type="Stand", ncol=6, nrow=6, lbound=-0.99, ubound=0.99, name="Cor") expect_identical(T4$vecTau1, vecTau4) expect_identical(T4$Cor, Cor4) ## User specified symmetric matrix with errors RE.User <- diag(c(TRUE, TRUE, FALSE, FALSE, TRUE, TRUE)) ## Okay expect_silent( create.Tau2(no.var=6, RE.type="User", Transform="expLog", RE.User=RE.User, RE.startvalues=0.01) ) ## Asymmetric RE.User[3,1] <- TRUE expect_error( create.Tau2(no.var=6, RE.type="User", Transform="expLog", RE.User=RE.User, RE.startvalues=0.01) ) ## Estimating covariance but variances are fixed RE.User[1,3] <- TRUE expect_error( create.Tau2(no.var=6, RE.type="User", Transform="expLog", RE.User=RE.User, RE.startvalues=0.01) ) }) context("Checking metaFIML functions") test_that("metaFIML() works correctly", { ## Univariate meta-analysis without AV fit1a <- metaFIML(y=r, v=r_v, x=JP_alpha, data=Jaramillo05) m1 <- "fy =~ 1*r r ~~ data.r_v*r fx =~ 1*JP_alpha JP_alpha ~~ 0*JP_alpha fy ~ Slope1_1*fx fy ~~ Tau2_1_1*fy fx ~~ CovX1_X1*fx fx ~ MeanX1*1 fy ~ Intercept1*1" RAM1 <- lavaan2RAM(m1, obs.variables = c("r", "JP_alpha"), std.lv=FALSE) fit1b <- create.mxModel(RAM=RAM1, data=Jaramillo05) coef1a <- coef(fit1a) names1 <- names(coef1a) coef1b <- coef(fit1b)[names1] ## Equal coefficients within the tolerance tolerance <- 1e-3 expect_equal(coef1a, coef1b, tolerance=tolerance) expect_equal(vcov(fit1a), vcov(fit1b)[names1, names1], tolerance=tolerance) expect_equal(fit1a$mx.fit$output$Minus2LogLikelihood, fit1b$mx.fit$output$Minus2LogLikelihood) ## Univariate meta-analysis with AV fit2a <- metaFIML(y=r, v=r_v, x=JP_alpha, av=IDV, data=Jaramillo05) m2 <- "fy =~ 1*r r ~~ data.r_v*r fx =~ 1*JP_alpha JP_alpha ~~ 0*JP_alpha fy ~ Slope1_1*fx fy ~~ Tau2_1_1*fy fx ~~ CovX1_X1*fx fx ~ MeanX1*1 fy ~ Intercept1*1 fz =~ 1*IDV IDV ~~ 0*IDV fz ~ MeanX2*1 fz ~~ CovX2_X2*fz + start(818)*fz fx ~~ CovX2_X1*fz fy ~~ CovX2_Y1*fz" RAM2 <- lavaan2RAM(m2, obs.variables = c("r", "JP_alpha", "IDV"), std.lv=FALSE) fit2b <- create.mxModel(RAM=RAM2, data=Jaramillo05) coef2a <- coef(fit2a) names2 <- names(coef2a) coef2b <- coef(fit2b)[names2] ## Equal coefficients within the tolerance expect_equal(coef2a, coef2b, tolerance=tolerance) ## Remove CovX2_X2 in comparisons as it is too big v_fit2a <- vcov(fit2a)[-4, -4] v_fit2b <- vcov(fit2b)[names2, names2][-4, -4] expect_equal(v_fit2a, v_fit2b, tolerance=tolerance) expect_equal(fit2a$mx.fit$output$Minus2LogLikelihood, fit2b$mx.fit$output$Minus2LogLikelihood) ## Multivariate meta-analysis without AV wvs94a$gnp <- scale(wvs94a$gnp) fit3a <- metaFIML(y=cbind(lifesat, lifecon), v=cbind(lifesat_var, inter_cov, lifecon_var), x=gnp, data=wvs94a) m3 <- "fy1 =~ 1*lifesat lifesat ~~ data.lifesat_var*lifesat fy2 =~ 1*lifecon lifecon ~~ data.lifecon_var*lifecon lifesat ~~ data.inter_cov*lifecon fx =~ 1*gnp gnp ~~ 0*gnp fy1 ~ Slope1_1*fx fy2 ~ Slope2_1*fx fy1 ~~ Tau2_1_1*fy1 fy2 ~~ Tau2_2_2*fy2 fy1 ~~ Tau2_2_1*fy2 fx ~~ CovX1_X1*fx fx ~ MeanX1*1 fy1 ~ Intercept1*1 fy2 ~ Intercept2*1" RAM3 <- lavaan2RAM(m3, obs.variables = c("lifesat", "lifecon", "gnp"), std.lv=FALSE) fit3b <- create.mxModel(RAM=RAM3, data=wvs94a) coef3a <- coef(fit3a) names3 <- names(coef3a) coef3b <- coef(fit3b)[names3] ## Equal coefficients within the tolerance expect_equal(coef3a, coef3b, tolerance=tolerance) expect_equal(vcov(fit3a), vcov(fit3b)[names3, names3], tolerance=tolerance) expect_equal(fit3a$mx.fit$output$Minus2LogLikelihood, fit3b$mx.fit$output$Minus2LogLikelihood) }) test_that("Handling NA in diagonals in tssem1FEM() correctly", { var.names <- paste0("x", 1:4) ## All correlations of a variables are NA but the diagonal is 1 C1 <- matrix(.5, ncol=4, nrow=4) diag(C1) <- 1 C2 <- matrix(.5, ncol=4, nrow=4) C2[2, ] <- C2[, 2] <- NA diag(C2) <- 1 C3 <- matrix(.5, ncol=4, nrow=4) C3[1, ] <- C3[, 1] <- NA diag(C3) <- 1 dimnames(C1) <- dimnames(C2) <- dimnames(C3) <- list(var.names, var.names) C2.NA <- C2 C2.NA[2,2] <- NA C3.NA <- C3 C3.NA[1,1] <- NA fit <- tssem1(Cov=list(C1, C2,C3), n=c(50, 50, 50), method="FEM") expect_identical(list(C1, C2.NA, C3.NA), fit$data) ## Not all correlations are NA. Thus, they cannot be corrected. C2[2,3] <- C2[3,2] <- .5 C3[1,2] <- C3[2,1] <- .5 expect_error(tssem1(Cov=list(C1, C2,C3), n=c(50, 50, 50), method="FEM")) }) test_that("Testing new asyCov() correctly", { set.seed(123456) ## Lower tolerance tolerance <- 1e-3 new <- asyCov(x=Becker92$data, n=Becker92$n, acov="individual") row.names(new) <- NULL old <- asyCovOld(x=Becker92$data, n=Becker92$n, acov="individual") expect_equal(new, old, tolerance=tolerance) new <- asyCov(x=Becker92$data, n=Becker92$n, acov="weighted") row.names(new) <- NULL old <- asyCovOld(x=Becker92$data, n=Becker92$n, acov="weighted") expect_equal(new, old, tolerance=tolerance) new <- asyCov(x=Becker92$data, n=Becker92$n, acov="unweighted") row.names(new) <- NULL old <- asyCovOld(x=Becker92$data, n=Becker92$n, acov="unweighted") expect_equal(new, old, tolerance=tolerance) new <- asyCov(x=Becker92$data, n=Becker92$n, acov="individual", as.matrix=FALSE) old <- asyCovOld(x=Becker92$data, n=Becker92$n, acov="individual", as.matrix=FALSE) expect_equal(new, old, tolerance=tolerance) new <- asyCov(x=Cheung09$data, n=Cheung09$n, acov="individual") row.names(new) <- NULL old <- asyCovOld(x=Cheung09$data, n=Cheung09$n, acov="individual") expect_equal(new, old, tolerance=tolerance) new <- asyCov(x=Cheung09$data, n=Cheung09$n, acov="weighted") row.names(new) <- NULL old <- asyCovOld(x=Cheung09$data, n=Cheung09$n, acov="weighted") expect_equal(new, old, tolerance=tolerance) new <- asyCov(x=Cheung09$data, n=Cheung09$n, acov="unweighted") row.names(new) <- NULL old <- asyCovOld(x=Cheung09$data, n=Cheung09$n, acov="unweighted") expect_equal(new, old, tolerance=tolerance) new <- asyCov(x=Cheung09$data, n=Cheung09$n, acov="individual", as.matrix=FALSE) old <- asyCovOld(x=Cheung09$data, n=Cheung09$n, acov="individual", as.matrix=FALSE) expect_equal(new, old, tolerance=tolerance) ## Lower tolerance of cor.analysis=F tolerance <- 1e-3 new <- asyCov(x=Becker92$data, n=Becker92$n, acov="individual", cor.analysis=FALSE) row.names(new) <- NULL old <- asyCovOld(x=Becker92$data, n=Becker92$n, acov="individual", cor.analysis=FALSE) expect_equal(new, old, tolerance=tolerance) new <- asyCov(x=Becker92$data, n=Becker92$n, acov="weighted", cor.analysis=FALSE) row.names(new) <- NULL old <- asyCovOld(x=Becker92$data, n=Becker92$n, acov="weighted", cor.analysis=FALSE) expect_equal(new, old, tolerance=tolerance) new <- asyCov(x=Becker92$data, n=Becker92$n, acov="unweighted", cor.analysis=FALSE) row.names(new) <- NULL old <- asyCovOld(x=Becker92$data, n=Becker92$n, acov="unweighted", cor.analysis=FALSE) expect_equal(new, old, tolerance=tolerance) ## Not equal ## new <- asyCov(x=Becker92$data, n=Becker92$n, acov="individual", as.matrix=FALSE, cor.analysis=FALSE) ## old <- asyCovOld(x=Becker92$data, n=Becker92$n, acov="individual", as.matrix=FALSE, cor.analysis=FALSE) ## expect_equal(new, old, tolerance=tolerance) }) context("Checking meta function") test_that("meta() observed statistics is correct", { fit <- summary(meta(r, r_v, data=Jaramillo05)) expect_equal(fit$obsStat, 61) })