test_that("Invalid `object`.", { fit <- el_eval(mtcars$mpg) expect_error(elt(fit, lhs = 1)) fit2 <- el_lm(mpg ~ 0, data = mtcars) expect_error(elt(fit2, lhs = 1)) fit3 <- el_glm(gear ~ 0, family = quasipoisson("log"), data = mtcars) expect_error(elt(fit3, rhs = coef(fit3))) fit4 <- el_glm(gear ~ ., family = quasipoisson("log"), data = mtcars) fit4@data <- NULL expect_error(elt(fit4, rhs = coef(fit4))) }) test_that("Invalid `rhs` and `lhs`.", { fit <- el_lm(mpg ~ disp + hp, data = mtcars) fit2 <- el_lm(mpg ~ disp + hp, data = mtcars, weights = mtcars$wt) lhs <- matrix(c(0, 1, -1), nrow = 1) expect_error(elt(fit)) expect_error(elt(fit, rhs = c(NA, 0))) expect_error(elt(fit, rhs = c(1, 0), lhs = lhs)) expect_error(elt(fit, rhs = matrix(c(1, 0, 0), ncol = 3), lhs = lhs)) expect_error(elt(fit, rhs = matrix(c(1, 0, 0), ncol = 1), lhs = lhs)) expect_error(elt(fit, rhs = matrix(c("error"), ncol = 1), lhs = lhs)) expect_error(elt(fit, lhs = matrix(c(1, 0, 0, 0, NA, 1), nrow = 2))) expect_error(elt(fit2, lhs = matrix(c(1, 0, 0, 0, NA, 1), nrow = 2))) expect_error(elt(fit, lhs = matrix(rnorm(4), ncol = 2))) expect_error(elt(fit2, lhs = matrix(rnorm(4), ncol = 2))) expect_error(elt(fit, lhs = matrix(rnorm(12), ncol = 3))) expect_error(elt(fit2, lhs = matrix(rnorm(12), ncol = 3))) expect_error(elt(fit, lhs = matrix(c(1, 1, 0, 0, 0, 0), nrow = 2))) expect_error(elt(fit2, lhs = matrix(c(1, 1, 0, 0, 0, 0), nrow = 2))) }) test_that("Invalid `calibrate`.", { fit <- el_lm(mpg ~ wt, data = mtcars) expect_error(elt(fit, rhs = c(1, 1), calibrate = c(1, 2))) expect_error(elt(fit, rhs = c(1, 1), calibrate = "error")) expect_error(elt(fit, rhs = c(1, 1), calibrate = "f")) fit2 <- el_glm(gear ~ mpg + cyl, family = quasipoisson("log"), data = mtcars) expect_error(elt(fit2, rhs = coef(fit2), calibrate = "f")) expect_error(elt(fit, lhs = c(0, 1, 1), calibrate = "boot")) expect_error(elt(fit, lhs = c(0, 1, 1), calibrate = "f")) }) test_that("Invalid `control`.", { fit <- el_mean(sleep$extra, par = 0) expect_error(elt(fit, lhs = 1, control = list(maxit = 200L))) fit2 <- el_glm(gear ~ ., family = quasipoisson("log"), data = mtcars) expect_error(elt(fit2, rhs = coef(fit2), control = list())) }) test_that("When elt == evaluation.", { x <- sleep$extra fit <- el_mean(x, par = 1.2) fit2 <- elt(fit, lhs = c("par"), rhs = 1.2) expect_equal(getDF(fit2), 1L) expect_output(print(fit2)) expect_output(print(summary(fit2))) expect_equal(getOptim(fit)$lambda, getOptim(fit2)$lambda) wfit <- el_mean(x, par = 1.2, weights = as.numeric(sleep$group)) wfit2 <- elt(wfit, rhs = 1.2) expect_output(print(wfit2)) expect_output(print(summary(wfit2))) expect_equal(getOptim(wfit)$lambda, getOptim(wfit2)$lambda) fit3 <- el_lm(mpg ~ disp + hp, data = mtcars) lhs <- matrix(c(0, 0, 1, 0, 0, 1), nrow = 2) rhs <- c(0, 0) fit4 <- elt(fit3, rhs = rhs, lhs = lhs) expect_output(print(fit3)) expect_equal(getOptim(fit3)$lambda, getOptim(fit4)$lambda) wfit3 <- el_lm(mpg ~ disp + hp, data = mtcars, weights = wt) lhs <- matrix(c(0, 0, 1, 0, 0, 1), nrow = 2) rhs <- c(0, 0) wfit4 <- elt(wfit3, rhs = rhs, lhs = lhs) expect_equal(getOptim(wfit3)$lambda, getOptim(wfit4)$lambda) }) test_that("`conv()` method and calibration.", { fit <- el_mean(precip, par = 60) expect_true(conv(elt(fit, rhs = 65, calibrate = "f"))) }) test_that("Probabilities add up to 1.", { fit <- el_mean(precip, par = 60) elt <- elt(fit, rhs = 65) expect_equal(sum(exp(logProb(elt))), 1, tolerance = 1e-07) }) test_that("Vector `lhs`.", { fit <- el_lm(mpg ~ disp + hp, data = mtcars) expect_error(elt(fit, lhs = c(1, -1, 0, 0))) out <- elt(fit, lhs = c(1, -1, 0)) expect_s4_class(out, "ELT") expect_output(show(out)) expect_output(print(out)) fit2 <- el_mean(faithful, par = c(4, 70), weights = faithful$waiting) out2 <- elt(fit2, lhs = c(17, -1), rhs = -3) expect_s4_class(out, "ELT") expect_output(show(out)) expect_output(print(out)) out3 <- summary(out2) expect_output(show(out3)) expect_output(print(out3)) }) test_that("Matrix `rhs`.", { fit <- el_lm(mpg ~ disp + hp, data = mtcars) rhs <- matrix(c(0, 1, 2), ncol = 1) out <- suppressMessages(elt(fit, rhs = rhs)) expect_s4_class(out, "ELT") }) test_that("Missing `object`.", { expect_null(elt(rhs = 1)) expect_error(elt(control = 1)) }) test_that("`SD` class.", { x <- women$height fit <- el_sd(x, mean = 65, sd = 4) fit@npar <- 0L expect_error(elt(fit, rhs = 1)) fit@npar <- 1L fit@data <- NULL expect_error(elt(fit, rhs = 1)) fit <- el_sd(x, mean = 65, sd = 4) expect_error(elt(fit, rhs = 1, control = list())) expect_error(elt(fit, rhs = 1, calibrate = "f")) expect_error(elt(fit, rhs = "error")) expect_error(elt(fit, rhs = c(1, 2))) expect_error(elt(fit, rhs = -1)) expect_error(elt(fit, rhs = rhs, lhs = lhs, calibrate = "boot")) expect_error(elt(fit, rhs = rhs, lhs = lhs, calibrate = "f")) expect_error(elt(fit, rhs = -1, lhs = 1, calibrate = "f")) out <- elt(fit, rhs = 1) out2 <- elt(fit, rhs = 1, lhs = 2) expect_s4_class(out, "ELT") expect_s4_class(out2, "ELT") }) test_that("`QGLM` class.", { fit <- el_glm(gear ~ mpg + cyl, family = quasipoisson("log"), data = mtcars ) out <- elt(fit, rhs = coef(fit)) expect_s4_class(out, "ELT") out2 <- elt(fit, lhs = c("mpg + cyl")) expect_s4_class(out2, "ELT") })