R Under development (unstable) (2024-05-17 r86566 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ## performance comparison > library(mefa) mefa 3.2-9 2024-05-19 > library(mefa4) Loading required package: Matrix mefa4 0.3-10 2024-05-19 Attaching package: 'mefa4' The following objects are masked from 'package:mefa': samp, taxa, xtab > > data(abmibirds) > ## NONE: no species was recorded (8) > ## SNI: Species Not Identified (216) > ## VNA: Variable Not Applicable (6) > ## DNC: Did Not Collect (13) > ## PNA: Protocol Not Available (0 in this case) > > ## S3 mefa processing > b3 <- abmibirds > b3 <- b3[!(b3$Scientific.Name %in% c("VNA", "DNC", "PNA")),] > levels(b3$Scientific.Name)[levels(b3$Scientific.Name) %in% c("NONE", "SNI")] <- "zero.pseudo" > b3$Counts <- ifelse(b3$Scientific.Name == "zero.pseudo", 0, 1) > b3$Label <- with(b3, paste(ABMI.Site, Year, Point.Count.Station, sep="_")) > x3 <- b3[!duplicated(b3$Label), c("Label", "ABMI.Site", "Year", "Field.Date", "Point.Count.Station", + "Wind.Conditions", "Precipitation")] > rownames(x3) <- x3$Label > z3 <- b3[!duplicated(b3$Scientific.Name), c("Common.Name", + "Scientific.Name", "Taxonomic.Resolution", "Unique.Taxonomic.Identification.Number")] > rownames(z3) <- z3$Scientific.Name > z3 <- z3[z3$Scientific.Name != "zero.pseudo",] > t31 <- system.time(s3 <- suppressWarnings(stcs(b3[,c("Label","Scientific.Name","Counts")]))) > t32 <- system.time(m30 <- mefa(s3)) > t33 <- system.time(m31 <- mefa(s3, x3, z3)) > y30 <- m30$xtab > t34 <- system.time(m32 <- mefa(y30, x3, z3)) > > ## S4 mefa4 processing > b4 <- abmibirds > b4$Label <- with(b4, paste(ABMI.Site, Year, Point.Count.Station, sep="_")) > x4 <- b4[!duplicated(b4$Label), c("Label", "ABMI.Site", "Year", "Field.Date", "Point.Count.Station", + "Wind.Conditions", "Precipitation")] > rownames(x4) <- x4$Label > z4 <- b4[!duplicated(b4$Scientific.Name), c("Common.Name", + "Scientific.Name", "Taxonomic.Resolution", "Unique.Taxonomic.Identification.Number")] > rownames(z4) <- z4$Scientific.Name > t41 <- system.time(s4 <- Xtab(~ Label + Scientific.Name, b4, cdrop = c("NONE", "SNI"), + subset = !(b4$Scientific.Name %in% c("VNA", "DNC", "PNA")), drop.unused.levels = TRUE)) > t42 <- system.time(m40 <- Mefa(s4)) > t43 <- system.time(m41 <- Mefa(s4, x4, z4)) > y40 <- as.matrix(m40@xtab) > t44 <- system.time(m42 <- Mefa(y40, x4, z4)) > > res <- cbind("SIZE, *=3"=c("b*"=object.size(b3), + "s*"=object.size(s3), + "y*0"=object.size(y30), + "m*0"=object.size(m30), + "m*1"=object.size(m31), + "m*2"=object.size(m32)), + "SIZE, *=4"=c("b*"=object.size(b4), + "s*"=object.size(s4), + "y*0"=object.size(y40), + "m*0"=object.size(m40), + "m*1"=object.size(m41), + "m*2"=object.size(m42)), + "TIME, *=3"=c("b*"=NA, + "s*"=t31[3], + "y*0"=NA, + "m*0"=t32[3], + "m*1"=t33[3], + "m*2"=t34[3]), + "TIME, *=4"=c("b*"=NA, + "s*"=t41[3], + "y*0"=NA, + "m*0"=t42[3], + "m*1"=t43[3], + "m*2"=t44[3])) > (res <- cbind(res, "SIZE"=res[,2]/res[,1], "TIME"=res[,4]/res[,3])) SIZE, *=3 SIZE, *=4 TIME, *=3 TIME, *=4 SIZE TIME b* 6522600 5813728 NA NA 0.8913206 NA s* 1458872 704384 0.32 0.03 0.4828278 0.09375000 y*0 6323296 6323008 NA NA 0.9999545 NA m*0 6324888 705560 1.17 0.00 0.1115530 0.00000000 m*1 7005368 1385648 0.98 0.02 0.1977980 0.02040816 m*2 7005368 1385648 0.02 0.00 0.1977980 0.00000000 > > ## debugging > > dim(y30) [1] 3534 214 > dim(y40) [1] 3534 214 > > setdiff(rownames(y30), rownames(y40)) character(0) > setdiff(rownames(y40), rownames(y30)) character(0) > > setdiff(colnames(y30), colnames(y40)) character(0) > setdiff(colnames(y40), colnames(y30)) character(0) > > system.time(xx3 <- aggregate(m31, "ABMI.Site")) user system elapsed 0.16 0.06 0.22 > system.time(xx4 <- groupSums(m41, 1, m41@samp$ABMI.Site)) user system elapsed 0.01 0.00 0.01 > as.Mefa(xx3) Object of class "Mefa" ..@ xtab: 330 x 214 sparse Matrix ..@ samp: NULL ..@ taxa: data frame with 4 variables ..@ join: left > xx4 Object of class "Mefa" ..@ xtab: 330 x 214 sparse Matrix ..@ samp: NULL ..@ taxa: data frame with 4 variables ..@ join: left > > > proc.time() user system elapsed 5.21 0.39 5.59