if (!identical(Sys.getenv("NOT_CRAN"), "true")) return() out <- capture.output( suppressMessages( cmds_mdm_lcdm <- measr_dcm( data = mdm_data, missing = NA, qmatrix = mdm_qmatrix, resp_id = "respondent", item_id = "item", type = "lcdm", method = "mcmc", seed = 63277, backend = "cmdstanr", iter_sampling = 500, iter_warmup = 1000, chains = 2, parallel_chains = 2, prior = c(prior(uniform(-15, 15), class = "intercept"), prior(uniform(0, 15), class = "maineffect"))) ) ) out <- capture.output( suppressMessages( cmds_mdm_dina <- measr_dcm( data = mdm_data, missing = NA, qmatrix = mdm_qmatrix, resp_id = "respondent", item_id = "item", type = "dina", attribute_structure = "independent", method = "mcmc", seed = 63277, backend = "rstan", iter = 1500, warmup = 1000, chains = 2, cores = 2, prior = c(prior(beta(5, 17), class = "slip"), prior(beta(5, 17), class = "guess"))) ) ) test_that("as_draws works", { draws <- as_draws(cmds_mdm_dina) expect_s3_class(draws, "draws_array") draws_a <- posterior::as_draws_array(cmds_mdm_dina) expect_s3_class(draws_a, "draws_array") draws_d <- posterior::as_draws_df(cmds_mdm_dina) expect_s3_class(draws_d, "draws_df") draws_l <- posterior::as_draws_list(cmds_mdm_lcdm) expect_s3_class(draws_l, "draws_list") draws_m <- posterior::as_draws_matrix(cmds_mdm_lcdm) expect_s3_class(draws_m, "draws_matrix") draws_r <- posterior::as_draws_rvars(cmds_mdm_lcdm) expect_s3_class(draws_r, "draws_rvars") }) test_that("get_mcmc_draws works as expected", { test_draws <- get_mcmc_draws(cmds_mdm_lcdm) expect_equal(posterior::ndraws(test_draws), 1000) expect_equal(posterior::nvariables(test_draws), 10) expect_s3_class(test_draws, "draws_array") test_draws <- get_mcmc_draws(cmds_mdm_dina, ndraws = 750) expect_equal(posterior::ndraws(test_draws), 750) expect_equal(posterior::nvariables(test_draws), 10) expect_s3_class(test_draws, "draws_array") }) test_that("log_lik is calculated correctly", { log_lik <- prep_loglik_array(cmds_mdm_lcdm) # expected value from 2-class LCA fit in Mplus expect_equal(sum(apply(log_lik, c(3), mean)), -331.764, tolerance = 1.000) }) test_that("loo and waic work", { err <- rlang::catch_cnd(loo(rstn_dina)) expect_s3_class(err, "error_bad_method") expect_match(err$message, "`method = \"mcmc\"`") err <- rlang::catch_cnd(waic(rstn_dino)) expect_s3_class(err, "error_bad_method") expect_match(err$message, "`method = \"mcmc\"`") check_loo <- loo(cmds_mdm_lcdm) expect_s3_class(check_loo, "psis_loo") check_waic <- waic(cmds_mdm_lcdm) expect_s3_class(check_waic, "waic") }) test_that("loo and waic can be added to model", { err <- rlang::catch_cnd(measr_extract(cmds_mdm_lcdm, "loo")) expect_s3_class(err, "rlang_error") expect_match(err$message, "LOO criterion must be added") err <- rlang::catch_cnd(measr_extract(cmds_mdm_lcdm, "waic")) expect_s3_class(err, "rlang_error") expect_match(err$message, "WAIC criterion must be added") err <- rlang::catch_cnd(add_criterion(rstn_dino)) expect_s3_class(err, "error_bad_method") expect_match(err$message, "`method = \"mcmc\"`") loo_model <- add_criterion(cmds_mdm_lcdm, criterion = "loo") expect_equal(names(loo_model$criteria), "loo") expect_s3_class(loo_model$criteria$loo, "psis_loo") lw_model <- add_criterion(loo_model, criterion = c("loo", "waic"), overwrite = TRUE) expect_equal(names(lw_model$criteria), c("loo", "waic")) expect_s3_class(lw_model$criteria$loo, "psis_loo") expect_s3_class(lw_model$criteria$waic, "waic") expect_identical(loo_model$criteria$loo, lw_model$criteria$loo) expect_identical(measr_extract(lw_model, "loo"), lw_model$criteria$loo) expect_identical(measr_extract(lw_model, "waic"), lw_model$criteria$waic) expect_identical(lw_model$criteria$loo, loo(lw_model)) expect_identical(lw_model$criteria$waic, waic(lw_model)) }) test_that("model comparisons work", { err <- rlang::catch_cnd(loo_compare(cmds_mdm_lcdm, cmds_mdm_dina)) expect_s3_class(err, "error_missing_criterion") expect_match(err$message, "does not contain a precomputed") lcdm_compare <- add_criterion(cmds_mdm_lcdm, criterion = c("loo", "waic")) err <- rlang::catch_cnd(loo_compare(lcdm_compare, cmds_mdm_dina)) expect_s3_class(err, "error_missing_criterion") expect_match(err$message, "Model 2 does not contain a precomputed") dina_compare <- add_criterion(cmds_mdm_dina, criterion = c("loo", "waic")) err <- rlang::catch_cnd(loo_compare(lcdm_compare, cmds_mdm_dina, model_names = c("m1", "m2", "m3"))) expect_s3_class(err, "error_bad_argument") expect_match(err$message, "same as the number of models") loo_comp <- loo_compare(lcdm_compare, dina_compare, criterion = "loo") expect_s3_class(loo_comp, "compare.loo") expect_equal(rownames(loo_comp), c("lcdm_compare", "dina_compare")) expect_equal(colnames(loo_comp), c("elpd_diff", "se_diff", "elpd_loo", "se_elpd_loo", "p_loo", "se_p_loo", "looic", "se_looic")) waic_comp <- loo_compare(lcdm_compare, dina_compare, criterion = "waic", model_names = c("first_model", "second_model")) expect_s3_class(waic_comp, "compare.loo") expect_equal(rownames(waic_comp), c("first_model", "second_model")) expect_equal(colnames(waic_comp), c("elpd_diff", "se_diff", "elpd_waic", "se_elpd_waic", "p_waic", "se_p_waic", "waic", "se_waic")) }) test_that("ppmc works", { test_ppmc <- fit_ppmc(cmds_mdm_lcdm, model_fit = character(), item_fit = character()) expect_equal(test_ppmc, list()) test_ppmc <- fit_ppmc(cmds_mdm_lcdm, ndraws = 500, return_draws = 0.2, model_fit = "raw_score", item_fit = "conditional_prob") expect_equal(names(test_ppmc), c("model_fit", "item_fit")) expect_equal(names(test_ppmc$model_fit), "raw_score") expect_s3_class(test_ppmc$model_fit$raw_score, "tbl_df") expect_equal(nrow(test_ppmc$model_fit$raw_score), 1L) expect_equal(colnames(test_ppmc$model_fit$raw_score), c("obs_chisq", "ppmc_mean", "2.5%", "97.5%", "rawscore_samples", "chisq_samples", "ppp")) expect_equal(nrow(test_ppmc$model_fit$raw_score$rawscore_samples[[1]]), 100) expect_equal(length(test_ppmc$model_fit$raw_score$chisq_samples[[1]]), 100) expect_equal(names(test_ppmc$item_fit), "conditional_prob") expect_s3_class(test_ppmc$item_fit$conditional_prob, "tbl_df") expect_equal(nrow(test_ppmc$item_fit$conditional_prob), 8L) expect_equal(colnames(test_ppmc$item_fit$conditional_prob), c("item", "class", "obs_cond_pval", "ppmc_mean", "2.5%", "97.5%", "samples", "ppp")) expect_equal(as.character(test_ppmc$item_fit$conditional_prob$item), rep(paste0("mdm", 1:4), each = 2)) expect_equal(as.character(test_ppmc$item_fit$conditional_prob$class), rep(c("[0]", "[1]"), 4)) expect_equal(vapply(test_ppmc$item_fit$conditional_prob$samples, length, integer(1)), rep(100, 8)) test_ppmc <- fit_ppmc(cmds_mdm_lcdm, ndraws = 200, return_draws = 0.9, probs = c(0.055, 0.945), model_fit = NULL, item_fit = "odds_ratio") expect_equal(names(test_ppmc), c("item_fit")) expect_equal(names(test_ppmc$item_fit), "odds_ratio") expect_s3_class(test_ppmc$item_fit$odds_ratio, "tbl_df") expect_equal(nrow(test_ppmc$item_fit$odds_ratio), 6L) expect_equal(colnames(test_ppmc$item_fit$odds_ratio), c("item_1", "item_2", "obs_or", "ppmc_mean", "5.5%", "94.5%", "samples", "ppp")) expect_equal(as.character(test_ppmc$item_fit$odds_ratio$item_1), c(rep("mdm1", 3), rep("mdm2", 2), "mdm3")) expect_equal(as.character(test_ppmc$item_fit$odds_ratio$item_2), c("mdm2", "mdm3", "mdm4", "mdm3", "mdm4", "mdm4")) expect_equal(vapply(test_ppmc$item_fit$odds_ratio$samples, length, integer(1)), rep(180, 6)) test_ppmc <- fit_ppmc(cmds_mdm_lcdm, ndraws = 1, return_draws = 0, model_fit = "raw_score", item_fit = c("conditional_prob", "odds_ratio")) expect_equal(names(test_ppmc), c("model_fit", "item_fit")) expect_equal(names(test_ppmc$model_fit), "raw_score") expect_equal(colnames(test_ppmc$model_fit$raw_score), c("obs_chisq", "ppmc_mean", "2.5%", "97.5%", "ppp")) expect_equal(names(test_ppmc$item_fit), c("conditional_prob", "odds_ratio")) expect_equal(colnames(test_ppmc$item_fit$conditional_prob), c("item", "class", "obs_cond_pval", "ppmc_mean", "2.5%", "97.5%", "ppp")) expect_equal(colnames(test_ppmc$item_fit$odds_ratio), c("item_1", "item_2", "obs_or", "ppmc_mean", "2.5%", "97.5%", "ppp")) }) test_that("ppmc extraction errors", { err <- rlang::catch_cnd(measr_extract(cmds_mdm_lcdm, "ppmc_raw_score")) expect_s3_class(err, "rlang_error") expect_match(err$message, "Model fit information must be added") err <- rlang::catch_cnd(measr_extract(cmds_mdm_lcdm, "ppmc_conditional_prob")) expect_s3_class(err, "rlang_error") expect_match(err$message, "Model fit information must be added") err <- rlang::catch_cnd(measr_extract(cmds_mdm_lcdm, "ppmc_conditional_prob_flags")) expect_s3_class(err, "rlang_error") expect_match(err$message, "Model fit information must be added") err <- rlang::catch_cnd(measr_extract(cmds_mdm_lcdm, "ppmc_odds_ratio")) expect_s3_class(err, "rlang_error") expect_match(err$message, "Model fit information must be added") err <- rlang::catch_cnd(measr_extract(cmds_mdm_lcdm, "ppmc_odds_ratio_flags")) expect_s3_class(err, "rlang_error") expect_match(err$message, "Model fit information must be added") }) test_that("model fit can be added", { test_model <- cmds_mdm_dina expect_equal(test_model$fit, list()) # add m2 and ppmc odds ratios test_model <- add_fit(test_model, method = c("m2", "ppmc"), model_fit = NULL, item_fit = "odds_ratio", return_draws = 0.2) expect_equal(names(test_model$fit), c("m2", "ppmc")) expect_equal(names(test_model$fit$ppmc), "item_fit") expect_equal(names(test_model$fit$ppmc$item_fit), "odds_ratio") expect_equal(names(test_model$fit$ppmc$item_fit$odds_ratio), c("item_1", "item_2", "obs_or", "ppmc_mean", "2.5%", "97.5%", "samples", "ppp")) expect_identical(test_model$fit$ppmc, fit_ppmc(test_model, model_fit = NULL, item_fit = "odds_ratio")) # nothing new does nothing test_model2 <- add_fit(test_model, method = "ppmc", model_fit = NULL, item_fit = NULL) expect_identical(test_model, test_model2) # now add ppmc raw score and conditional probs -- other fit should persist test_model <- add_fit(test_model, method = "ppmc", model_fit = "raw_score", item_fit = "conditional_prob", probs = c(0.055, 0.945)) expect_equal(names(test_model$fit), c("m2", "ppmc")) expect_equal(names(test_model$fit$ppmc), c("item_fit", "model_fit")) expect_equal(names(test_model$fit$ppmc$model_fit), "raw_score") expect_equal(names(test_model$fit$ppmc$model_fit$raw_score), c("obs_chisq", "ppmc_mean", "5.5%", "94.5%", "ppp")) expect_equal(names(test_model$fit$ppmc$item_fit), c("odds_ratio", "conditional_prob")) expect_equal(names(test_model$fit$ppmc$item_fit$odds_ratio), c("item_1", "item_2", "obs_or", "ppmc_mean", "2.5%", "97.5%", "samples", "ppp")) expect_equal(names(test_model$fit$ppmc$item_fit$conditional_prob), c("item", "class", "obs_cond_pval", "ppmc_mean", "5.5%", "94.5%", "ppp")) # overwrite just conditional prob with samples and new probs test_model <- add_fit(test_model, method = "ppmc", overwrite = TRUE, model_fit = NULL, item_fit = "conditional_prob", return_draws = 0.2, probs = c(.1, .9)) expect_equal(names(test_model$fit), c("m2", "ppmc")) expect_equal(names(test_model$fit$ppmc), c("item_fit", "model_fit")) expect_equal(names(test_model$fit$ppmc$model_fit), "raw_score") expect_equal(names(test_model$fit$ppmc$model_fit$raw_score), c("obs_chisq", "ppmc_mean", "5.5%", "94.5%", "ppp")) expect_equal(names(test_model$fit$ppmc$item_fit), c("odds_ratio", "conditional_prob")) expect_equal(names(test_model$fit$ppmc$item_fit$odds_ratio), c("item_1", "item_2", "obs_or", "ppmc_mean", "2.5%", "97.5%", "samples", "ppp")) expect_equal(names(test_model$fit$ppmc$item_fit$conditional_prob), c("item", "class", "obs_cond_pval", "ppmc_mean", "10%", "90%", "samples", "ppp")) # test extraction rs_check <- measr_extract(test_model, "ppmc_raw_score") expect_equal(rs_check, test_model$fit$ppmc$model_fit$raw_score) cp_check <- measr_extract(test_model, "ppmc_conditional_prob") expect_equal(cp_check, test_model$fit$ppmc$item_fit$conditional_prob) expect_equal(measr_extract(test_model, "ppmc_conditional_prob_flags", ppmc_interval = 0.95), dplyr::filter(cp_check, ppp <= 0.025 | ppp >= 0.975)) expect_equal(measr_extract(test_model, "ppmc_conditional_prob_flags", ppmc_interval = 0.8), dplyr::filter(cp_check, ppp <= 0.1 | ppp >= 0.9)) or_check <- measr_extract(test_model, "ppmc_odds_ratio") expect_equal(or_check, test_model$fit$ppmc$item_fit$odds_ratio) expect_equal(measr_extract(test_model, "ppmc_odds_ratio_flags", ppmc_interval = 0.95), dplyr::filter(or_check, ppp <= 0.025 | ppp >= 0.975)) expect_equal(measr_extract(test_model, "ppmc_odds_ratio_flags", ppmc_interval = 0.8), dplyr::filter(or_check, ppp <= 0.1 | ppp >= 0.9)) }) test_that("respondent probabilities are correct", { mdm_preds <- predict(cmds_mdm_lcdm, newdata = mdm_data, resp_id = "respondent", summary = TRUE) mdm_full_preds <- predict(cmds_mdm_lcdm, summary = FALSE) # dimensions are correct expect_equal(names(mdm_preds), c("class_probabilities", "attribute_probabilities")) expect_equal(colnames(mdm_preds$class_probabilities), c("respondent", "class", "probability", "2.5%", "97.5%")) expect_equal(colnames(mdm_preds$attribute_probabilities), c("respondent", "attribute", "probability", "2.5%", "97.5%")) expect_equal(nrow(mdm_preds$class_probabilities), nrow(mdm_data) * (2 ^ 1)) expect_equal(nrow(mdm_preds$attribute_probabilities), nrow(mdm_data) * 1) expect_equal(names(mdm_full_preds), c("class_probabilities", "attribute_probabilities")) expect_equal(colnames(mdm_full_preds$class_probabilities), c("respondent", "[0]", "[1]")) expect_equal(colnames(mdm_full_preds$attribute_probabilities), c("respondent", "multiplication")) expect_equal(nrow(mdm_full_preds$class_probabilities), nrow(mdm_data)) expect_equal(nrow(mdm_full_preds$attribute_probabilities), nrow(mdm_data)) # extract works expect_equal(cmds_mdm_lcdm$respondent_estimates, list()) err <- rlang::catch_cnd(measr_extract(cmds_mdm_lcdm, "class_prob")) expect_match(err$message, "added to a model object before class probabilities") err <- rlang::catch_cnd(measr_extract(cmds_mdm_lcdm, "attribute_prob")) expect_match(err$message, "added to a model object before attribute probabilities") cmds_mdm_lcdm <- add_respondent_estimates(cmds_mdm_lcdm) expect_equal(cmds_mdm_lcdm$respondent_estimates, mdm_preds) expect_equal(measr_extract(cmds_mdm_lcdm, "class_prob"), mdm_preds$class_probabilities %>% dplyr::select("respondent", "class", "probability") %>% tidyr::pivot_wider(names_from = "class", values_from = "probability")) expect_equal(measr_extract(cmds_mdm_lcdm, "attribute_prob"), mdm_preds$attribute_prob %>% dplyr::select("respondent", "attribute", "probability") %>% tidyr::pivot_wider(names_from = "attribute", values_from = "probability")) })