set.seed(20101) data(ESL.mixture) mixture.train=data.frame(x=I(ESL.mixture$x),y=ESL.mixture$y) fda.fit=fda(y~x,data=mixture.train) print(coef(fda.fit)) mda.fit=mda(y~x,data=mixture.train) print(coef(mda.fit)) mda.predict = predict(mda.fit,mixture.train$x) print(mda.predict) fitb=fda(y~x,data=mixture.train,method=bruto,cost=1) fitm=fda(y~x,data=mixture.train,method=mars,cost=1) fitb.confusion = confusion(fitb) print(fitb.confusion) fitm.confusion = confusion(fitm) print(fitm.confusion) mda.ppred=predict(mda.fit,newdata=ESL.mixture$xnew) ##print(mda.ppred) objects <- list( fda.fit = fda.fit, mda.fit = mda.fit, fitb = fitb, fitm = fitm, fitb.confusion = fitb.confusion, fitm.confusion = fitm.confusion, mda.ppred = mda.ppred) ##saveRDS(objects, "test_results/mda-0.4-results.RDS") expected <- readRDS("test_results/mda-0.4-results.RDS") for (x in names(objects)) { cat(sprintf("Testing %s\n", x)) if (x == "fitb") { expect_equal(objects[[x]], expected[[x]], tol = 1e-7) } else { expect_equal(objects[[x]], expected[[x]]) } }