# Samples and checks data structure. # Meant to be used with testthat::expect_true() data_gauss = data.frame( # y should be continuous y = 1:5, ok_y = rnorm(5), # test underscore and decimals bad_y_char = c("a", "b", "c", "d", "e"), bad_y_factor = factor(1:5), # x should be continuous x = -1:3, ok_x = rnorm(5), # test underscore and decimals bad_x_char = c("a", "b", "c", "d", "e"), bad_x_factor = factor(1:5), # varying effects should be categorical-ish id = c("a", "b", "c", "d", "e"), ok_id_factor = factor(c(-3, 0, 5, 9, 1.233243)), # It's a factor, so decimals are OK ok_id_integer = -2:2, # interval bad_id = rnorm(5), # decimal numbers weights_ok = c(0.1, 1, 2, 1, 1), weights_bad = c(-0.1, 1, 2, 1, 1) # With negative ) # Only needs to test binomial-specific stuff data_binomial = data.frame( # y should be a natural number > 0 y = c(1, 0, 100, 3, 5), y_bad_numeric = c(-1, 5.1, 10, 3, 5), # negative, decimal, y_bern = c(0, 1, 0, 1, 1), # trials should be a natural number 0 <= N <= y N = c(1, 1, 100, 6, 10), N_bad_numeric = c(-1, 1.1, 99, 6, 10), # smaller than y, decimal, negative N_bad_factor = factor(c(1, 0, 50, 6, 10)), N_bad_char = c("1", "1", "100", "6", "10"), # x x = -1:3, # Varying effects id = c("a", "b", "c", "d", "e"), weights_ok = c(0.1, 1, 2, 1, 1) # Actually not OK since it's not implemented yet )