context("Model component 'gen'") set.seed(1, kind="Mersenne-Twister", normal.kind="Inversion") n <- 1000L m <- 25L df <- data.frame( f = factor(sample(m, n, replace=TRUE)) ) vf <- rnorm(m, sd=0.4) df$y <- with(df, vf[f] + rnorm(n)) test_that("gaussian model with a single gen component works", { sampler <- create_sampler(y ~ 1 + gen(factor = ~ f, name="v"), data=df) expect_identical(names(sampler$mod), c("reg1", "v")) # explicit intercept sampler <- create_sampler(y ~ gen(factor = ~ f, name="v"), data=df) expect_identical(names(sampler$mod), "v") sim <- MCMCsim(sampler, n.chain = 2, n.iter=500, store.all=TRUE, verbose=FALSE) summ <- summary(sim) expect_between(summ$v_sigma[, "Mean"], 0.3 * 0.4, 3 * 0.4) #plot(vf, summ$v[, "Mean"]); abline(0, 1) }) df$y <- with(df, rbinom(n, 1, prob = 1 / (1 + exp(-vf[f])))) test_that("binomial model with a single gen component works", { sampler <- create_sampler(y ~ gen(factor = ~ f, name="v"), data=df, family="binomial") sim <- MCMCsim(sampler, n.chain = 2, n.iter=500, store.all=TRUE, verbose=FALSE) summ <- summary(sim) expect_between(summ$v_sigma[, "Mean"], 0.3 * 0.4, 3 * 0.4) #plot(vf, summ$v[, "Mean"]); abline(0, 1) }) df$x <- runif(n) df$y <- with(df, rbinom(n, 1, prob = 1 / (1 + exp(-(1 + 0.5*df$x + vf[f]))))) test_that("binomial multilevel model with non-zero prior mean in regression component works", { sampler <- create_sampler( y ~ reg(~ 1 + x, prior=pr_normal(mean=c(0, 0.5), precision=c(0, 1e6))) + gen(factor = ~ f, name="v"), data=df, family="binomial" ) expect_length(sampler$block[[1L]], 2L) sim <- MCMCsim(sampler, n.chain = 2, n.iter=500, store.all=TRUE, verbose=FALSE) summ <- summary(sim) expect_between(summ$reg1["x", "Mean"], 0.49, 0.51) expect_between(summ$v_sigma[, "Mean"], 0.3 * 0.4, 3 * 0.4) #plot(vf, summ$v[, "Mean"]); abline(0, 1) }) n <- 2000L m <- 100L df <- data.frame( f = factor(sample(m, n, replace=TRUE)) ) vf <- 0.4 * rt(m, df=1) df$y <- with(df, 2 + vf[f] + rnorm(n)) test_that("model with t-distributed random effects works", { sampler <- create_sampler( y ~ 1 + gen(factor = ~ f, priorA=pr_invchisq(df=2), name="v"), data=df, family="gaussian" ) expect_equal(sampler$mod$v$priorA$type, "invchisq") sim <- MCMCsim(sampler, store.all=TRUE, n.chain=2, n.iter=700, verbose=FALSE) summ <- summary(sim) #plot(vf, summ$v[, "Mean"]); abline(0, 1) expect_equal(unname(summ$v[, "Mean"]), vf, tolerance=0.5) })