context("Input checks") # for reproducibility, even across platforms: set.seed(1, kind="Mersenne-Twister", normal.kind="Inversion") n <- 1000L dat <- data.frame( x = rnorm(n), z = runif(n) ) dat$y <- rnorm(n) test_that("missing values in y are flagged", { dat$y[sample.int(n, 2L)] <- NA expect_error(create_sampler(y ~ x + z, data=dat), "2 missing") expect_error(create_sampler(y ~ x + z, family="binomial", data=dat), "2 missing") }) test_that("range for binomial response is checked", { dat$y <- rnorm(n) expect_error(sampler <- create_sampler(y ~ x + z, data=dat, family="binomial"), "range") expect_error(create_sampler(y ~ x + z, data=dat, family="binomial", ny=100), "range") }) test_that("logistic binomial model works for non-integral data", { dat$y <- runif(n) sampler <- create_sampler(y ~ 1, data=dat, family="binomial") sim <- MCMCsim(sampler, n.chain=2, burnin=100, n.iter=300, verbose=FALSE) expect_equal(summary(sim$reg1)[, "Mean"], 0, tolerance=0.2) }) test_that("for negative binomial and Poisson families negative response values are flagged", { dat$y <- rnorm(n) expect_error(create_sampler(y ~ x + z, data=dat, family="negbinomial"), "negative") expect_error(create_sampler(y ~ x + z, data=dat, family="poisson"), "negative") }) test_that("response variable for multinomial family is checked", { dat$y <- rnorm(n) expect_error(create_sampler(y ~ x + z, data=dat, family="multinomial")) dat$y <- cbind(rbinom(n, 2, prob=0.2), rbinom(n, 2, prob=0.2), rep(1, n)) sampler <- create_sampler(y ~ x + z, data=dat, family="multinomial") expect_identical(sampler$Km1, 2L) dat$y[1, 1] <- -1L expect_error(create_sampler(y ~ x + z, data=dat, family="multinomial"), "negative") }) test_that("zeroes are flagged for gamma family", { dat$y <- rgamma(n, shape=1e-4) # this yields many 0s due to numerical underflow expect_error(create_sampler(y ~ 1, data=dat, family="gamma"), "strictly positive") }) test_that("using 'vreg' or 'vfac' model component in formula is flagged", { dat$y <- rnorm(n) dat$g <- sample(1:10, n, replace=TRUE) expect_error(create_sampler(y ~ 1 + gen(factor = ~ g) + vreg(factor="g")), "variance model") expect_error(create_sampler(y ~ 1 + x + vfac(factor="g")), "variance model") })