R Under development (unstable) (2023-08-27 r85021 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(mbbefd) Loading required package: fitdistrplus Loading required package: MASS Loading required package: survival Loading required package: alabama Loading required package: numDeriv Loading required package: Rcpp Package: mbbefd Version: 0.8.11 Date: BugReport: https://github.com/spedygiorgio/mbbefd/issues > > #test of GB1 distribution > > > > > #integral of the density > integrate(dgbeta, 0, 1, shape0=1, shape1=3, shape2=3/2) 1 with absolute error < 3.3e-09 > integrate(dgbeta, 0, 1, shape0=1/2, shape1=3, shape2=3/2) 1 with absolute error < 3.2e-10 > integrate(dgbeta, 0, 1, shape0=2, shape1=3, shape2=3/2) 1 with absolute error < 2.4e-08 > > z <- 0:10/10 > cbind(pi*z^(3*pi-1)*(1-z^pi)^(3/2-1)/beta(3, 3/2), dgbeta(z, pi, 3, 3/2)) [,1] [,2] [1,] 0.000000e+00 0.000000e+00 [2,] 7.749692e-08 7.749692e-08 [3,] 2.655611e-05 2.655611e-05 [4,] 8.018270e-04 8.018270e-04 [5,] 8.894060e-03 8.894060e-03 [6,] 5.649280e-02 5.649280e-02 [7,] 2.491641e-01 2.491641e-01 [8,] 8.384937e-01 8.384937e-01 [9,] 2.233348e+00 2.233348e+00 [10,] 4.504939e+00 4.504939e+00 [11,] 0.000000e+00 0.000000e+00 > cbind(dbeta(z^pi, 3, 3/2)*pi*z^(pi-1), dgbeta(z, pi, 3, 3/2)) [,1] [,2] [1,] 0.000000e+00 0.000000e+00 [2,] 7.749692e-08 7.749692e-08 [3,] 2.655611e-05 2.655611e-05 [4,] 8.018270e-04 8.018270e-04 [5,] 8.894060e-03 8.894060e-03 [6,] 5.649280e-02 5.649280e-02 [7,] 2.491641e-01 2.491641e-01 [8,] 8.384937e-01 8.384937e-01 [9,] 2.233348e+00 2.233348e+00 [10,] 4.504939e+00 4.504939e+00 [11,] 0.000000e+00 0.000000e+00 > cbind(pbeta(z^pi, 3, 3/2), pgbeta(z, pi, 3, 3/2)) [,1] [,2] [1,] 0.000000e+00 0.000000e+00 [2,] 8.223421e-10 8.223421e-10 [3,] 5.639895e-07 5.639895e-07 [4,] 2.559710e-05 2.559710e-05 [5,] 3.802695e-04 3.802695e-04 [6,] 3.044319e-03 3.044319e-03 [7,] 1.634905e-02 1.634905e-02 [8,] 6.588056e-02 6.588056e-02 [9,] 2.110280e-01 2.110280e-01 [10,] 5.445815e-01 5.445815e-01 [11,] 1.000000e+00 1.000000e+00 > cbind(qbeta(z, 3, 3/2)^(1/pi), qgbeta(z, pi, 3, 3/2)) [,1] [,2] [1,] 0.0000000 0.0000000 [2,] 0.7337871 0.7337871 [3,] 0.7949537 0.7949537 [4,] 0.8344269 0.8344269 [5,] 0.8646673 0.8646673 [6,] 0.8898449 0.8898449 [7,] 0.9119622 0.9119622 [8,] 0.9322443 0.9322443 [9,] 0.9516895 0.9516895 [10,] 0.9716348 0.9716348 [11,] 1.0000000 1.0000000 > > > #log argument > > cbind(dbeta(z, 3, 3/2, log=TRUE), dgbeta(z, 1, 3, 3/2, log=TRUE)) [,1] [,2] [1,] -Inf NaN [2,] -2.7764788 -2.7764788 [3,] -1.4490760 -1.4490760 [4,] -0.7049115 -0.7049115 [5,] -0.2066226 -0.2066226 [6,] 0.1485037 0.1485037 [7,] 0.4015750 0.4015750 [8,] 0.5660353 0.5660353 [9,] 0.6303656 0.6303656 [10,] 0.5193581 0.5193581 [11,] -Inf -Inf > cbind(log(dgbeta(z, pi, 3, 3/2, log=FALSE)), dgbeta(z, pi, 3, 3/2, log=TRUE)) [,1] [,2] [1,] -Inf -Inf [2,] -16.3730277 -16.3730277 [3,] -10.5362506 -10.5362506 [4,] -7.1286177 -7.1286177 [5,] -4.7223717 -4.7223717 [6,] -2.8736422 -2.8736422 [7,] -1.3896434 -1.3896434 [8,] -0.1761482 -0.1761482 [9,] 0.8035017 0.8035017 [10,] 1.5051743 1.5051743 [11,] -Inf -Inf > cbind(log(pgbeta(z, pi, 3, 3/2, log=FALSE)), pgbeta(z, pi, 3, 3/2, log=TRUE)) [,1] [,2] [1,] -Inf -Inf [2,] -20.9188646 -20.9188646 [3,] -14.3882302 -14.3882302 [4,] -10.5730313 -10.5730313 [5,] -7.8746304 -7.8746304 [6,] -5.7944781 -5.7944781 [7,] -4.1135857 -4.1135857 [8,] -2.7199119 -2.7199119 [9,] -1.5557645 -1.5557645 [10,] -0.6077377 -0.6077377 [11,] 0.0000000 0.0000000 > cbind(log(pgbeta(z, pi, 3, 3/2, log=FALSE, lower=TRUE)), pgbeta(z, pi, 3, 3/2, log=TRUE, lower=TRUE)) [,1] [,2] [1,] -Inf -Inf [2,] -20.9188646 -20.9188646 [3,] -14.3882302 -14.3882302 [4,] -10.5730313 -10.5730313 [5,] -7.8746304 -7.8746304 [6,] -5.7944781 -5.7944781 [7,] -4.1135857 -4.1135857 [8,] -2.7199119 -2.7199119 [9,] -1.5557645 -1.5557645 [10,] -0.6077377 -0.6077377 [11,] 0.0000000 0.0000000 > cbind(qgbeta(z, pi, 3, 3/2, log=FALSE), qgbeta(log(z), pi, 3, 3/2, log=TRUE)) [,1] [,2] [1,] 0.0000000 0.0000000 [2,] 0.7337871 0.7337871 [3,] 0.7949537 0.7949537 [4,] 0.8344269 0.8344269 [5,] 0.8646673 0.8646673 [6,] 0.8898449 0.8898449 [7,] 0.9119622 0.9119622 [8,] 0.9322443 0.9322443 [9,] 0.9516895 0.9516895 [10,] 0.9716348 0.9716348 [11,] 1.0000000 1.0000000 > cbind(qgbeta(z, pi, 3, 3/2, log=FALSE, lower=TRUE), qgbeta(log(z), pi, 3, 3/2, log=TRUE, lower=TRUE)) [,1] [,2] [1,] 0.0000000 0.0000000 [2,] 0.7337871 0.7337871 [3,] 0.7949537 0.7949537 [4,] 0.8344269 0.8344269 [5,] 0.8646673 0.8646673 [6,] 0.8898449 0.8898449 [7,] 0.9119622 0.9119622 [8,] 0.9322443 0.9322443 [9,] 0.9516895 0.9516895 [10,] 0.9716348 0.9716348 [11,] 1.0000000 1.0000000 > > #RNG > n <- 1e4 > x <- rgbeta(n, shape0=2, shape1=3, shape2=3/2) > y <- rgbeta(n, shape0=pi, shape1=3, shape2=3/2) > > #test density > z <- 0:100/100 > > plot(density(x)); lines(z, dgbeta(z, shape0=2, shape1=3, shape2=3/2), col="red") > plot(density(y)); lines(z, dgbeta(z, shape0=pi, shape1=3, shape2=3/2), col="red") > > #mode > modeGB1 <- function(shape0, shape1, shape2) + { + if(shape1+shape2-1/shape0>1) + ((shape1-1/shape0)/(shape1+shape2-1/shape0-1))^(1/shape0) + else + NaN + } > c(modeGB1(2, 3, 3/2), density(x)$x[which.max(density(x)$y)]) [1] 0.9128709 0.9028143 > c(modeGB1(pi, 3, 3/2), density(y)$x[which.max(density(y)$y)]) [1] 0.9470343 0.9492062 > > #test CDF > z <- 0:10/10 > cbind(ecdf(x)(z), pgbeta(z, shape0=2, shape1=3, shape2=3/2)) [,1] [,2] [1,] 0.0000 0.000000e+00 [2,] 0.0000 2.179280e-06 [3,] 0.0000 1.378829e-04 [4,] 0.0013 1.539860e-03 [5,] 0.0071 8.403941e-03 [6,] 0.0301 3.079579e-02 [7,] 0.0856 8.710400e-02 [8,] 0.2035 2.041266e-01 [9,] 0.4080 4.107520e-01 [10,] 0.7141 7.146727e-01 [11,] 1.0000 1.000000e+00 > > cbind(ecdf(y)(z), pgbeta(z, shape0=pi, shape1=3, shape2=3/2)) [,1] [,2] [1,] 0.0000 0.000000e+00 [2,] 0.0000 8.223421e-10 [3,] 0.0000 5.639895e-07 [4,] 0.0000 2.559710e-05 [5,] 0.0005 3.802695e-04 [6,] 0.0030 3.044319e-03 [7,] 0.0142 1.634905e-02 [8,] 0.0647 6.588056e-02 [9,] 0.2107 2.110280e-01 [10,] 0.5363 5.445815e-01 [11,] 1.0000 1.000000e+00 > > #plot(ecdf(x)); lines(z, pgbeta(z, shape0=2, shape1=3, shape2=3/2), col="red") > #plot(ecdf(y)); lines(z, pgbeta(z, shape0=pi, shape1=3, shape2=3/2), col="red") > > #mean > c(mean(x), mgbeta(1, shape0=2, shape1=3, shape2=3/2)) [1] 0.8060811 0.8053399 > c(mean(y), mgbeta(1, shape0=pi, shape1=3, shape2=3/2)) [1] 0.8691161 0.8681286 > > #raw moment > for(i in 2:4) + { + cat("E(X^", i, ")\n", sep="") + print(c(mean(x^i), mgbeta(i, shape0=2, shape1=3, shape2=3/2))) + print(c(mean(y^i), mgbeta(i, shape0=pi, shape1=3, shape2=3/2))) + } E(X^2) [1] 0.6675872 0.6666667 [1] 0.7645970 0.7629595 E(X^3) [1] 0.5646389 0.5637379 [1] 0.6795740 0.6774769 E(X^4) [1] 0.4856545 0.4848485 [1] 0.6093146 0.6068729 > > #test limited expected value > d <- 1/2 > s0 <- 2 > s1 <- 3 > s2 <- 3/2 > > mean(pmin(x, d)) [1] 0.4978821 > > f <- function(x, d, shape0) dgbeta(x, shape0=shape0, shape1=3, shape2=3/2)*pmin(x,d) > integrate(f, 0, 1, d=d, shape0=s0) 0.4977446 with absolute error < 5e-06 > > > > #test EC > f <- function(x, d, shape0) dgbeta(x, shape0=shape0, shape1=3, shape2=3/2)*pmin(x, d)/mgbeta(1, shape0=shape0, shape1=3, shape2=3/2) > F <- function(d, shape0) sapply(d, function(d) integrate(f, 0, 1, d=d, shape0=shape0)$value) > > cbind(eecf(x)(z), ecgbeta(z, shape0=2, shape1=3, shape2=3/2), F(z, shape0=2)) [,1] [,2] [,3] [1,] 0.0000000 0.0000000 0.0000000 [2,] 0.1240570 0.1241711 0.1241712 [3,] 0.2481140 0.2483374 0.2483373 [4,] 0.3721111 0.3724309 0.3724291 [5,] 0.4957368 0.4960794 0.4960793 [6,] 0.6176576 0.6180553 0.6180553 [7,] 0.7350465 0.7353826 0.7353816 [8,] 0.8420269 0.8422583 0.8422585 [9,] 0.9292422 0.9293007 0.9293013 [10,] 0.9845859 0.9844530 0.9844524 [11,] 1.0000000 1.0000000 1.0000000 > > cbind(eecf(y)(z), ecgbeta(z, shape0=pi, shape1=3, shape2=3/2), F(z, shape0=pi)) [,1] [,2] [,3] [1,] 0.0000000 0.0000000 0.0000000 [2,] 0.1150594 0.1151903 0.1151903 [3,] 0.2301189 0.2303806 0.2303806 [4,] 0.3451783 0.3455701 0.3455700 [5,] 0.4602226 0.4607443 0.4607441 [6,] 0.5751299 0.5757815 0.5757815 [7,] 0.6893787 0.6900359 0.6900363 [8,] 0.8004348 0.8010489 0.8010442 [9,] 0.9009795 0.9016246 0.9016241 [10,] 0.9749285 0.9755137 0.9755141 [11,] 1.0000000 1.0000000 1.0000000 > > > > > > proc.time() user system elapsed 1.06 0.20 1.25