R Under development (unstable) (2024-09-06 r87103 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("matrixStats") > > dense_rank <- function(x) match(x, table = sort(unique(x))) > > rowRanks_R <- function(x, ties.method, ..., useNames = NA) { + if (ties.method == "dense") { + res <- t(apply(x, MARGIN = 1L, FUN = dense_rank)) + } else { + res <- t(apply(x, MARGIN = 1L, FUN = rank, na.last = "keep", ties.method = ties.method)) + } + + # Preserve dimnames attribute? + dim(res) <- dim(x) + dimnames(res) <- if (isTRUE(useNames)) dimnames(x) else NULL + + res + } > > colRanks_R <- function(x, ties.method, preserveShape = FALSE, ..., useNames = NA) { + if (ties.method == "dense") { + res <- t(apply(x, MARGIN = 2L, FUN = dense_rank)) + } else { + res <- t(apply(x, MARGIN = 2L, FUN = rank, na.last = "keep", ties.method = ties.method)) + } + + # Preserve dimnames attribute? + tx <- t(x) + dim(res) <- dim(tx) + dimnames(res) <- if (isTRUE(useNames)) dimnames(tx) else NULL + + if (preserveShape) res <- t(res) + res + } > > set.seed(1) > > cat("Consistency checks:\n") Consistency checks: > xs <- vector("list", length = 4L) > for (kk in 1:4) { + + # Simulate data in a matrix of any shape + dim <- sample(40:80, size = 2L) + n <- prod(dim) + x <- rnorm(n, sd = 10) + dim(x) <- dim + + # Add NAs? + if ((kk %% 4) %in% c(3, 0)) { + cat("Adding NAs\n") + nna <- sample(n, size = 1L) + x[sample(length(x), size = nna)] <- NA_real_ + } + + # Integer or double? + if ((kk %% 4) %in% c(2, 0)) { + cat("Coercing to integers\n") + storage.mode(x) <- "integer" + } + + xs[[kk]] <- x + } # for (kk ...) Coercing to integers Adding NAs Adding NAs Coercing to integers > str(xs) List of 4 $ : num [1:43, 1:78] 13.3 12.72 4.15 -15.4 -9.29 ... $ : int [1:46, 1:61] 2 11 -16 -5 19 5 26 -13 1 -9 ... $ : num [1:42, 1:47] NA -22.3 NA NA NA ... $ : int [1:42, 1:78] NA NA NA NA NA NA NA NA NA NA ... > > for (kk in 1:4) { + cat("Random test #", kk, "\n", sep = "") + x <- xs[[kk]] + tx <- t(x) + + for (ties in c("max", "min", "average", "first", "last", "dense")) { + cat(sprintf("ties.method = %s\n", ties)) + # rowRanks(): + y1 <- matrixStats::rowRanks(x, ties.method = ties) + if (ties != "last" || getRversion() >= "3.3.0") { + y2 <- rowRanks_R(x, ties.method = ties) + stopifnot(identical(y1, y2)) + } + + y3 <- matrixStats::colRanks(tx, ties.method = ties) + stopifnot(identical(y1, y3)) + + # colRanks(): + y1 <- matrixStats::colRanks(x, ties.method = ties) + if (ties != "last" || getRversion() >= "3.3.0") { + y2 <- colRanks_R(x, ties.method = ties) + stopifnot(identical(y1, y2)) + } + + y3 <- matrixStats::rowRanks(tx, ties.method = ties) + stopifnot(identical(y1, y3)) + } + } # for (kk ...) Random test #1 ties.method = max ties.method = min ties.method = average ties.method = first ties.method = last ties.method = dense Random test #2 ties.method = max ties.method = min ties.method = average ties.method = first ties.method = last ties.method = dense Random test #3 ties.method = max ties.method = min ties.method = average ties.method = first ties.method = last ties.method = dense Random test #4 ties.method = max ties.method = min ties.method = average ties.method = first ties.method = last ties.method = dense > > # Note, below we know ties.method %in% c("min", "max", "average") is correct > > cat("Consistency checks for random:\n") Consistency checks for random: > tolerance <- 0.1 > nsamples <- 10000 > for (kk in 1:4) { + cat("Random test #", kk, "\n", sep = "") + x <- xs[[kk]] + tx <- t(x) + + for (ties in c("random")) { + cat(sprintf("ties.method = %s\n", ties)) + + ## rowRanks(): + y0 <- rowRanks_R(x, ties.method = ties) + y1 <- matrixStats::rowRanks(x, ties.method = ties) + + ## Assert symmetric rank differences + d <- y1 - y0 + stopifnot(all(rowSums(d) == 0, na.rm = TRUE)) + + ## Assert within [min, max] + y2min <- matrixStats::rowRanks(x, ties.method = "min") + y2max <- matrixStats::rowRanks(x, ties.method = "max") + stopifnot(all(y1 >= y2min, na.rm = TRUE) && all(y1 <= y2max, na.rm = TRUE)) + ## Assert near average + y1list <- replicate(nsamples, matrixStats::rowRanks(x, ties.method = ties), simplify = FALSE) + y1mean <- Reduce(`+`, y1list) / nsamples + y2avg <- matrixStats::rowRanks(x, ties.method = "average") + stopifnot(all(abs(y1mean - y2avg) < tolerance, na.rm = TRUE)) + + ## colRanks(): + y0 <- colRanks_R(x, ties.method = ties) + y1 <- matrixStats::colRanks(x, ties.method = ties) + + ## Assert symmetric rank differences + d <- y1 - y0 + stopifnot(all(rowSums(d) == 0, na.rm = TRUE)) + + ## Assert within [min, max] + y2min <- matrixStats::colRanks(x, ties.method = "min") + y2max <- matrixStats::colRanks(x, ties.method = "max") + stopifnot(all(y1 >= y2min, na.rm = TRUE) && all(y1 <= y2max, na.rm = TRUE)) + y1list <- replicate(nsamples, matrixStats::colRanks(x, ties.method = ties), simplify = FALSE) + y1mean <- Reduce(`+`, y1list) / nsamples + ## Assert near average + y2avg <- matrixStats::colRanks(x, ties.method = "average") + stopifnot(all(abs(y1mean - y2avg) < tolerance, na.rm = TRUE)) + } + } # for (kk ...) Random test #1 ties.method = random Random test #2 ties.method = random Random test #3 ties.method = random Random test #4 ties.method = random > > > ## Exception handling > x <- matrix(1:12, nrow = 3L, ncol = 4L) > y <- try(rowRanks(x, ties.method = "unknown"), silent = TRUE) > stopifnot(inherits(y, "try-error")) > > y <- try(colRanks(x, ties.method = "unknown"), silent = TRUE) > stopifnot(inherits(y, "try-error")) > > dimnames <- list(letters[1:3], LETTERS[1:4]) > for (mode in c("integer", "double")){ + storage.mode(x) <- mode + # Test with and without dimnames on x + for (setDimnames in c(TRUE, FALSE)) { + if (setDimnames) dimnames(x) <- dimnames + else dimnames(x) <- NULL + # Check names attribute + for (useNames in c(if (!matrixStats:::isUseNamesNADefunct()) NA, TRUE, FALSE)) { + for (ties in c("max", "min", "average", "first", "last", "dense", "random")) { + cat(sprintf("ties.method = %s\n", ties)) + # rowRanks(): + y1 <- matrixStats::rowRanks(x, ties.method = ties, useNames = useNames) + if (ties != "last" || getRversion() >= "3.3.0") { + y2 <- rowRanks_R(x, ties.method = ties, useNames = useNames) + stopifnot(identical(y1, y2)) + } + + y3 <- matrixStats::colRanks(t(x), ties.method = ties, useNames = useNames) + stopifnot(identical(y1, y3)) + + # colRanks(): + y1 <- matrixStats::colRanks(x, ties.method = ties, useNames = useNames) + if (ties != "last" || getRversion() >= "3.3.0") { + y2 <- colRanks_R(x, ties.method = ties, useNames = useNames) + stopifnot(identical(y1, y2)) + } + + y3 <- matrixStats::rowRanks(t(x), ties.method = ties, useNames = useNames) + stopifnot(identical(y1, y3)) + + # Check preserveShape + y1 <- matrixStats::colRanks(x, ties.method = ties, preserveShape = TRUE, useNames = useNames) + if (ties != "last" || getRversion() >= "3.3.0") { + y2 <- colRanks_R(x, ties.method = ties, preserveShape = TRUE, useNames = useNames) + stopifnot(identical(y1, y2)) + } + } + } + } + } ties.method = max ties.method = min ties.method = average ties.method = first ties.method = last ties.method = dense ties.method = random ties.method = max ties.method = min ties.method = average ties.method = first ties.method = last ties.method = dense ties.method = random ties.method = max ties.method = min ties.method = average ties.method = first ties.method = last ties.method = dense ties.method = random ties.method = max ties.method = min ties.method = average ties.method = first ties.method = last ties.method = dense ties.method = random ties.method = max ties.method = min ties.method = average ties.method = first ties.method = last ties.method = dense ties.method = random ties.method = max ties.method = min ties.method = average ties.method = first ties.method = last ties.method = dense ties.method = random ties.method = max ties.method = min ties.method = average ties.method = first ties.method = last ties.method = dense ties.method = random ties.method = max ties.method = min ties.method = average ties.method = first ties.method = last ties.method = dense ties.method = random > > proc.time() user system elapsed 7.51 1.45 9.25