R Under development (unstable) (2024-09-06 r87103 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("matrixStats") > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Consistency checks > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > set.seed(1) > > mean2_R <- function(x, na.rm = FALSE, idxs = NULL) { + if (is.null(idxs)) { + mean(x, na.rm = na.rm) + } else { + mean(x[idxs], na.rm = na.rm) + } + } # mean2_R() > > > cat("Consistency checks:\n") Consistency checks: > for (kk in 1:20) { + cat("Random test #", kk, "\n", sep = "") + + # Simulate data in a matrix of any shape + n <- sample(100L, size = 1L) + x <- rnorm(n, sd = 100) + + # Add NAs? + if ((kk %% 4) %in% c(3, 0)) { + cat("Adding NAs\n") + nna <- sample(n, size = 1L) + na_values <- c(NA_real_, NaN) + t <- sample(na_values, size = nna, replace = TRUE) + x[sample(length(x), size = nna)] <- t + } + + # Integer or double? + if ((kk %% 4) %in% c(2, 0)) { + cat("Coercing to integers\n") + storage.mode(x) <- "integer" + } + + na.rm <- sample(c(TRUE, FALSE), size = 1L) + + # Sum over all + y0 <- mean2_R(x, na.rm = na.rm) + y1 <- mean2(x, na.rm = na.rm) + stopifnot(all.equal(y1, y0)) + + # Sum over subset + nidxs <- sample(n, size = 1L) + idxs <- sample(n, size = nidxs) + y0 <- mean2_R(x, na.rm = na.rm, idxs = idxs) + y1 <- mean2(x, na.rm = na.rm, idxs = idxs) + stopifnot(all.equal(y1, y0)) + + if (storage.mode(x) == "integer") { + storage.mode(x) <- "logical" + + y0 <- mean2_R(x, na.rm = na.rm) + y1 <- mean2(x, na.rm = na.rm) + stopifnot(all.equal(y1, y0)) + + y0 <- mean2_R(x, na.rm = na.rm, idxs = idxs) + y1 <- mean2(x, na.rm = na.rm, idxs = idxs) + stopifnot(all.equal(y1, y0)) + } + } # for (kk ...) Random test #1 Random test #2 Coercing to integers Random test #3 Adding NAs Random test #4 Adding NAs Coercing to integers Random test #5 Random test #6 Coercing to integers Random test #7 Adding NAs Random test #8 Adding NAs Coercing to integers Random test #9 Random test #10 Coercing to integers Random test #11 Adding NAs Random test #12 Adding NAs Coercing to integers Random test #13 Random test #14 Coercing to integers Random test #15 Adding NAs Random test #16 Adding NAs Coercing to integers Random test #17 Random test #18 Coercing to integers Random test #19 Adding NAs Random test #20 Adding NAs Coercing to integers > > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Special cases > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > for (na.rm in c(FALSE, TRUE)) { + # Averaging over zero elements (integers) + x <- integer(0) + s1 <- mean(x, na.rm = na.rm) + s2 <- mean2(x, na.rm = na.rm) + stopifnot(identical(s1, s2)) + + x <- 1:5 + idxs <- integer(0) + s1 <- mean(x[idxs], na.rm = na.rm) + s2 <- mean2(x, idxs = idxs, na.rm = na.rm) + stopifnot(identical(s1, s2)) + + # Averaging over NA_integer_:s + x <- rep(NA_integer_, times = 5L) + s1 <- mean(x, na.rm = na.rm) + s2 <- mean2(x, na.rm = na.rm) + stopifnot(identical(s1, s2)) + + x <- rep(NA_integer_, times = 5L) + idxs <- 1:3 + s1 <- mean(x[idxs], na.rm = na.rm) + s2 <- mean2(x, idxs = idxs, na.rm = na.rm) + stopifnot(identical(s1, s2)) + + + # Averaging over zero elements (doubles) + x <- double(0) + s1 <- mean(x) + s2 <- mean2(x) + stopifnot(identical(s1, s2)) + + x <- as.double(1:10) + idxs <- integer(0) + s1 <- mean(x[idxs]) + s2 <- mean2(x, idxs = idxs) + stopifnot(identical(s1, s2)) + + # Averaging over NA_real_:s + x <- rep(NA_real_, times = 5L) + s1 <- mean(x, na.rm = na.rm) + s2 <- mean2(x, na.rm = na.rm) + stopifnot(identical(s1, s2)) + + x <- rep(NA_real_, times = 5L) + idxs <- 1:3 + s1 <- mean(x[idxs], na.rm = na.rm) + s2 <- mean2(x, idxs = idxs, na.rm = na.rm) + stopifnot(identical(s1, s2)) + + # Averaging over -Inf:s + x <- rep(-Inf, times = 3L) + s1 <- mean(x, na.rm = na.rm) + s2 <- mean2(x, na.rm = na.rm) + stopifnot(identical(s1, s2)) + + # Averaging over +Inf:s + x <- rep(+Inf, times = 3L) + s1 <- mean(x, na.rm = na.rm) + s2 <- mean2(x, na.rm = na.rm) + stopifnot(identical(s1, s2)) + + # Averaging over mix of -Inf:s and +Inf:s + x <- rep(c(-Inf, +Inf), times = 3L) + s1 <- mean(x, na.rm = na.rm) + s2 <- mean2(x, na.rm = na.rm) + stopifnot(identical(s1, s2)) + + # Averaging over mix of -Inf:s and +Inf:s and numerics + x <- rep(c(-Inf, +Inf, 3.14), times = 2L) + s1 <- mean(x, na.rm = na.rm) + s2 <- mean2(x, na.rm = na.rm) + stopifnot(identical(s1, s2)) + + # Averaging over mix of NaN, NA, +Inf, and numerics + x <- c(NaN, NA, +Inf, 3.14) + s1 <- mean(x, na.rm = na.rm) + s2 <- mean2(x, na.rm = na.rm) + if (na.rm) { + stopifnot(identical(s2, s1)) + } else { + stopifnot(is.na(s1), is.na(s2)) + ## NOTE, due to compiler optimization, it is not guaranteed that NA is + ## returned here (as one would expect). NaN might very well be returned, + ## when both NA and NaN are involved. This is an accepted feature in R, + ## which is documented in help("is.nan"). See also + ## https://stat.ethz.ch/pipermail/r-devel/2017-April/074009.html. + ## Thus, we cannot guarantee that s1 is identical to s0. + } + + # Averaging over mix of NaN, NA_real_, +Inf, and numerics + x <- c(NA_real_, NaN, +Inf, 3.14) + s1 <- mean(x, na.rm = na.rm) + s2 <- mean2(x, na.rm = na.rm) + if (na.rm) { + stopifnot(identical(s2, s1)) + } else { + stopifnot(is.na(s1), is.na(s2)) + ## NOTE, due to compiler optimization, it is not guaranteed that NA is + ## returned here (as one would expect). NaN might very well be returned, + ## when both NA and NaN are involved. This is an accepted feature in R, + ## which is documented in help("is.nan"). See also + ## https://stat.ethz.ch/pipermail/r-devel/2017-April/074009.html. + ## Thus, we cannot guarantee that s1 is identical to s0. + } + } > > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Argument 'idxs' > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > x <- 1:5 > idxs_list <- list( + integer = 1:3, + double = as.double(1:3), + logical = (x <= 3) + ) > > for (idxs in idxs_list) { + cat("idxs:\n") + str(idxs) + s1 <- mean(x[idxs], na.rm = TRUE) + s2 <- mean2(x, idxs = idxs, na.rm = TRUE) + stopifnot(identical(s1, s2)) + } idxs: int [1:3] 1 2 3 idxs: num [1:3] 1 2 3 idxs: logi [1:5] TRUE TRUE TRUE FALSE FALSE > > proc.time() user system elapsed 0.37 0.12 0.48