test_that("loglogis_rp", { # (optional) load the small test dataset # data_file <- system.file("extdata", "small.txt", package = "marp", mustWork = TRUE) # data <- read.table(data_file)$V1 # set some parameters m <- 10 # number of iterations for MLE optimization t <- seq(100,200,by=10) # time intervals y <- 304 # cut-off year for estimating probablity # fix the random seed set.seed(42) # sample data for testing data <- rgamma(30, 3, 0.01) # fit renewal model suppressWarnings( # suppressing warnings from stats::nlm: NA/Inf replaced by maximum positive value res <- marp::loglogis_rp(data, t, m, y) ) # check result expect_equal(res$par1, 2.6037079185931518) expect_equal(res$par2, 247.59811806509711) expect_equal(res$logL, -195.12976531752238) expect_equal(res$AIC, 394.25953063504477) expect_equal(res$BIC, 397.06192539836906) expect_equal(res$mu_hat, 319.72010329420084) expect_equal(res$pr_hat, 0.53433492133739346) haz_hat_expected <- c( -6.0990224350990703, -5.9701692150581938, -5.8576922967014680, -5.7593904228651995, -5.6734988535545332, -5.5985634116876613, -5.5333575575736793, -5.4768266965366923, -5.4280501449345273, -5.3862147352308334, -5.3505961677509442 ) expect_true(all.equal(res$haz_hat, haz_hat_expected)) })