test_that("gamma_rp", { # (optional) load the small test dataset # data_file <- system.file("extdata", "small.txt", package = "marp", mustWork = TRUE) # data <- read.table(data_file)$V1 # set some parameters m <- 10 # number of iterations for MLE optimization t <- seq(100,200,by=10) # time intervals y <- 304 # cut-off year for estimating probablity # fix the random seed set.seed(42) # sample data for testing data <- rgamma(30, 3, 0.01) # fit renewal model res <- marp::gamma_rp(data, t, m, y) # check result expect_equal(res$par1, 2.7626793657057762) expect_equal(res$par2, 0.0094307059277139432) expect_equal(res$logL, -193.76650950646049) expect_equal(res$AIC, 391.53301901292099) expect_equal(res$BIC, 394.33541377624528) expect_equal(res$mu_hat, 292.94512912200048) expect_equal(res$pr_hat, 0.42154974433034809, tolerance = 1e-6) haz_hat_expected <- c( -6.0942031084732298, -5.9967873794574516, -5.9117418563554684, -5.8368230853439300, -5.7703089176306639, -5.7108525626839901, -5.6573839062669986, -5.6090408956082456, -5.5651206740587922, -5.5250440506799734, -5.4883291920475745 ) expect_true(all.equal(res$haz_hat, haz_hat_expected)) })