test_that("upperT", { # set some parameters up <- 100 # upper bound hat <- rep(150, 6) # estimates obtained from each model sigmasq <- 10 # variance Tstar <- matrix(rep(100,600),6,100) # T statistics estimated from bootstrap samples weights <- rep(1/6, 6) # model weights B <- 100 # number of bootstrapped samples alpha <- 0.05 # confidence level # calculate the lower limit of T statistics res <- marp::upperT(up, hat, sigmasq, Tstar, weights, B, alpha) # check result expect_equal(res, -0.025000000000000001) })