test_that("poisson_rp", { # set some parameters m <- 10 # number of iterations for MLE optimization t <- seq(100,200,by=10) # time intervals y <- 304 # cut-off year for estimating probablity # fix the random seed set.seed(42) # sample data for testing data <- rgamma(30, 3, 0.01) # fit renewal model res <- marp::poisson_rp(data, t, y) # check result expect_equal(res$par1, 0.0034136086430979953) expect_equal(res$par2, NA) expect_equal(res$logL, -200.39955882401648) expect_equal(res$AIC, 402.79911764803296) expect_equal(res$BIC, 404.2003150296951) expect_equal(res$mu_hat, 292.94512187913182) expect_equal(res$pr_hat, 0.60038574701819891) expect_true(all.equal(res$haz_hat, rep(c(-5.6799852941338829), times=11))) })