# # generate 1000 random data points in the unit cube data = data.frame(x = runif(1000), y = runif(1000), z = runif(1000)) dists = as.matrix(dist(data)) min_sum = min(apply(dists, 1, sum)) cluster = convert_to_clusters(row.names(data)) medoid = get_cluster_medoid(dists, cluster) test_that("medoid has minimum sum", { expect_true(sum(dists[medoid, ]) == min_sum) }) test_that("maximum pairwise distance is maximum", { expect_true(max(dists) == get_width(dists, cluster)) }) test_that("max distance to medoid is maximum", { expect_true(max(dists[medoid, ]) == get_max_eccentricity(dists, cluster)) })