testthat::test_that("power with alpha-spending, weighted", { l = lrpower(kMax = 2, informationRates = c(0.8, 1), alpha = 0.025, typeAlphaSpending = "sfOF", allocationRatioPlanned = 1, accrualTime = seq(0, 8), accrualIntensity = 26/9*seq(1, 9), piecewiseSurvivalTime = c(0, 6), stratumFraction = c(0.2, 0.8), lambda1 = c(0.0533, 0.0309, 1.5*0.0533, 1.5*0.0309), lambda2 = c(0.0533, 0.0533, 1.5*0.0533, 1.5*0.0533), gamma1 = -log(1-0.05)/12, gamma2 = -log(1-0.05)/12, accrualDuration = 22, followupTime = 18, fixedFollowup = FALSE, rho1 = 0, rho2 = 1) testthat::expect_equal(round(l$overallResults$overallReject, 4), 0.9313) }) testthat::test_that("power for stratified analysis", { p1 = c(0.28, 0.13, 0.25, 0.34) p2 = c(0.28, 0.72) p3 = c(0.43, 0.37, 0.2) stratumFraction = p1 %x% p2 %x% p3 stratumFraction = stratumFraction/sum(stratumFraction) theta1 = c(1, 2.127, 0.528, 0.413) theta2 = c(1, 0.438) theta3 = c(1, 0.614, 0.159) lambda2 = 0.009211*exp(log(theta1) %x% log(theta2) %x% log(theta3)) caltime(nevents = 66, accrualDuration = 24, accrualIntensity = 12, stratumFraction = stratumFraction, lambda1 = 0.4466*lambda2, lambda2 = lambda2, followupTime = 100) l = lrpower(kMax = 3, informationRates = (1:3)/3, alpha = 0.025, typeAlphaSpending = "sfOF", accrualIntensity = 12, stratumFraction = stratumFraction, lambda1 = 0.4466*lambda2, lambda2 = lambda2, accrualDuration = 24, followupTime = 30.92) testthat::expect_equal(round(l$overallResults$overallReject, 4), 0.8824) })