test_that("lpbwcde default output", { set.seed(42) n <- 100 x_data <- matrix(rnorm(1 * n, mean = 0, sd = 1), ncol = 1) y_data <- matrix(rnorm(n, mean = 0, sd = 1)) y_grid <- stats::quantile(y_data, seq(from = 0.1, to = 0.9, by = 0.1)) # bw estimation model1 <- lpbwcde(x_data = x_data, y_data = y_data, x = 0, bw_type = "imse-rot") print(model1) summary(model1) coef(model1) expect_equal(model1$opt$ng, 19) model1 <- lpbwcde(x_data = x_data, y_data = y_data, x = 0, bw_type = "mse-rot") expect_equal(model1$opt$bw_type, "mse-rot") }) test_that("lpbwcde multivariate default output", { set.seed(42) n <- 100 x_data <- matrix(rnorm(2 * n, mean = 0, sd = 1), ncol = 2) y_data <- matrix(rnorm(n, mean = 0, sd = 1)) y_grid <- stats::quantile(y_data, seq(from = 0.1, to = 0.9, by = 0.1)) # bw estimation model1 <- lpbwcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = matrix(c(0, 0), ncol = 2), bw_type = "imse-rot") summary(model1) expect_equal(model1$opt$bw_type, "imse-rot") }) test_that("lpbwcde default output", { set.seed(42) n <- 100 x_data <- matrix(rnorm(1 * n, mean = 0, sd = 1), ncol = 1) y_data <- matrix(rnorm(n, mean = 0, sd = 1)) y_grid <- stats::quantile(y_data, seq(from = 0.1, to = 0.9, by = 0.1)) # bw estimation model1 <- lpbwcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = 0, mu = 0, p = 3, bw_type = "imse-rot") print(model1) summary(model1) coef(model1) expect_equal(model1$opt$bw_type, "imse-rot") })