library("lpcde") set.seed(42) n <- 1000 x_data <- matrix(rnorm(1 * n, mean = 0, sd = 1), ncol = 1) y_data <- matrix(rnorm(n, mean = 0, sd = 1)) y_grid <- stats::quantile(y_data, seq(from = 0.1, to = 0.9, by = 0.1)) # bw estimation model1 <- lpbwcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = 0, bw_type = "imse-rot") summary(model1) # density estimation model2 <- lpcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = 0, bw = model1$BW[, 2]) summary(model2) # non-negative and integrating to 1 density estimation model2 <- lpcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = 0, bw = model1$BW[, 2], nonneg = TRUE, normalize = TRUE) summary(model2) # bw estimation model1 <- lpbwcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = 0, bw_type = "mse-rot") summary(model1) # density estimation model2 <- lpcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = 0, bw = model1$BW[, 2]) summary(model2) set.seed(42) n <- 1000 x_data <- matrix(rnorm(2 * n, mean = 0, sd = 1), ncol = 2) y_data <- matrix(rnorm(n, mean = 0, sd = 1)) y_grid <- stats::quantile(y_data, seq(from = 0.1, to = 0.9, by = 0.1)) # bw estimation model1 <- lpbwcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = matrix(c(0, 0), ncol = 2), bw_type = "imse-rot") summary(model1) # density estimation model2 <- lpcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = matrix(c(0, 0), ncol = 2), bw = model1$BW[, 2]) summary(model2) # bw estimation model1 <- lpbwcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = matrix(c(0, 0), ncol = 2), bw_type = "mse-rot") summary(model1) # density estimation model2 <- lpcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = matrix(c(0, 0), ncol = 2), bw = model1$BW[, 2]) summary(model2)