library("lpcde") set.seed(42) n=1000 x_data = matrix(rnorm(1*n, mean=0, sd=1), ncol=1) y_data = matrix(rnorm(n, mean=0, sd=1)) y_grid = stats::quantile(y_data, seq(from=0.1, to=0.9, by=0.1)) #bw estimation model1 = lpbwcde(x_data=x_data, y_data=y_data, y_grid=y_grid, x=0, bw_type = "imse-rot") summary(model1) # density estimation model2 = lpcde(x_data=x_data, y_data=y_data, y_grid=y_grid, x=0, bw=model1$BW[,2]) summary(model2) #bw estimation model1 = lpbwcde(x_data=x_data, y_data=y_data, y_grid=y_grid, x=0, bw_type = "mse-rot") summary(model1) # density estimation model2 = lpcde(x_data=x_data, y_data=y_data, y_grid=y_grid, x=0, bw=model1$BW[,2]) summary(model2) set.seed(42) n=1000 x_data = matrix(rnorm(2*n, mean=0, sd=1), ncol=2) y_data = matrix(rnorm(n, mean=0, sd=1)) y_grid = stats::quantile(y_data, seq(from=0.1, to=0.9, by=0.1)) #bw estimation model1 = lpbwcde(x_data=x_data, y_data=y_data, y_grid=y_grid, x=matrix(c(0, 0), ncol=2), bw_type="imse-rot") summary(model1) # density estimation model2 = lpcde(x_data=x_data, y_data=y_data, y_grid=y_grid, x=matrix(c(0, 0), ncol=2), bw=model1$BW[,2]) summary(model2) #bw estimation model1 = lpbwcde(x_data=x_data, y_data=y_data, y_grid=y_grid, x=matrix(c(0, 0), ncol=2), bw_type="mse-rot") summary(model1) # density estimation model2 = lpcde(x_data=x_data, y_data=y_data, y_grid=y_grid, x=matrix(c(0, 0), ncol=2), bw=model1$BW[,2]) summary(model2)