# Avoid random failures to converge set.seed(1) # See Becker-Clogg (1989) test library(logmult) data(color) rcm <- rc(color[,,1], 2, weighting="marginal", start=NA) rcu <- rc(color[,,1], 2, weighting="uniform", start=NA) rcn <- rc(color[,,1], 2, weighting="none", start=NA) stopifnot(all.equal(fitted(rcm), fitted(rcu))) stopifnot(all.equal(fitted(rcm), fitted(rcn))) phim <- maor(fitted(rcm), TRUE, weighting="marginal", norm=2) phiu <- maor(fitted(rcu), TRUE, weighting="uniform", norm=2) phin <- maor(fitted(rcn), TRUE, weighting="none", norm=2) cphim <- maor(fitted(rcm), TRUE, TRUE, weighting="marginal", norm=2) cphiu <- maor(fitted(rcm), TRUE, TRUE, weighting="uniform", norm=2) cphin <- maor(fitted(rcm), TRUE, TRUE, weighting="none", norm=2) maorm <- maor(fitted(rcm), weighting="marginal", norm=2) maoru <- maor(fitted(rcu), weighting="uniform", norm=2) maorn <- maor(fitted(rcn), weighting="none", norm=2) cmaorm <- maor(fitted(rcm), cell=TRUE, weighting="marginal", norm=2) cmaoru <- maor(fitted(rcu), cell=TRUE, weighting="uniform", norm=2) cmaorn <- maor(fitted(rcn), cell=TRUE, weighting="none", norm=2) stopifnot(all.equal(phim, sqrt(sum((rcm$assoc$phi)^2)))) stopifnot(all.equal(phiu, sqrt(sum(abs(rcu$assoc$phi)^2)))) stopifnot(all.equal(phin, sqrt(sum(abs(rcn$assoc$phi)^2)))) stopifnot(all.equal(phim, sqrt(sum(cphim)))) stopifnot(all.equal(phiu, sqrt(sum(cphiu)))) stopifnot(all.equal(phin, sqrt(sum(cphin)))) stopifnot(all.equal(maorm, exp(sqrt(sum(cmaorm))))) stopifnot(all.equal(maoru, exp(sqrt(sum(cmaoru))))) stopifnot(all.equal(maorn, exp(sqrt(sum(cmaorn))))) # Test on perfectly symmetric association data(ocg1973) rcm <- rc(ocg1973, 2, symmetric=TRUE, weighting="marginal", start=NA) rcu <- rc(ocg1973, 2, symmetric=TRUE, weighting="uniform", start=NA) rcn <- rc(ocg1973, 2, symmetric=TRUE, weighting="none", start=NA) stopifnot(all.equal(fitted(rcm), fitted(rcu))) stopifnot(all.equal(fitted(rcm), fitted(rcn))) w <- (rcm$assoc$row.weights + rcm$assoc$col.weights)[,1]/2 phim <- maor(fitted(rcm), TRUE, weighting="marginal", norm=2, row.weights=w, col.weights=w) phiu <- maor(fitted(rcu), TRUE, weighting="uniform", norm=2) phin <- maor(fitted(rcn), TRUE, weighting="none", norm=2) sphim <- maor(fitted(rcm), TRUE, component="symmetric", weighting="marginal", norm=2, row.weights=w, col.weights=w) sphiu <- maor(fitted(rcu), TRUE, component="symmetric", weighting="uniform", norm=2) sphin <- maor(fitted(rcn), TRUE, component="symmetric", weighting="none", norm=2) aphim <- maor(fitted(rcm), TRUE, component="antisymmetric", weighting="marginal", norm=2, row.weights=w, col.weights=w) aphiu <- maor(fitted(rcu), TRUE, component="antisymmetric", weighting="uniform", norm=2) aphin <- maor(fitted(rcn), TRUE, component="antisymmetric", weighting="none", norm=2) cphim <- maor(fitted(rcm), TRUE, TRUE, weighting="marginal", norm=2, row.weights=w, col.weights=w) cphiu <- maor(fitted(rcu), TRUE, TRUE, weighting="uniform", norm=2) cphin <- maor(fitted(rcn), TRUE, TRUE, weighting="none", norm=2) maorm <- maor(fitted(rcm), weighting="marginal", norm=2, row.weights=w, col.weights=w) maoru <- maor(fitted(rcu), weighting="uniform", norm=2) maorn <- maor(fitted(rcn), weighting="none", norm=2) smaorm <- maor(fitted(rcm), component="symmetric", weighting="marginal", norm=2, row.weights=w, col.weights=w) smaoru <- maor(fitted(rcu), component="symmetric", weighting="uniform", norm=2) smaorn <- maor(fitted(rcn), component="symmetric", weighting="none", norm=2) amaorm <- maor(fitted(rcm), component="antisymmetric", weighting="marginal", norm=2, row.weights=w, col.weights=w) amaoru <- maor(fitted(rcu), component="antisymmetric", weighting="uniform", norm=2) amaorn <- maor(fitted(rcn), component="antisymmetric", weighting="none", norm=2) cmaorm <- maor(fitted(rcm), cell=TRUE, weighting="marginal", norm=2, row.weights=w, col.weights=w) cmaoru <- maor(fitted(rcu), cell=TRUE, weighting="uniform", norm=2) cmaorn <- maor(fitted(rcn), cell=TRUE, weighting="none", norm=2) stopifnot(all.equal(phim, sphim)) stopifnot(all.equal(phiu, sphiu)) stopifnot(all.equal(phin, sphin)) stopifnot(all.equal(phim, sqrt(sum((rcm$assoc$phi)^2)))) stopifnot(all.equal(phiu, sqrt(sum(abs(rcu$assoc$phi)^2)))) stopifnot(all.equal(phin, sqrt(sum(abs(rcn$assoc$phi)^2)))) stopifnot(all(c(aphim, aphiu, aphin) < 1e-10)) stopifnot(all.equal(phim, sqrt(sum(cphim)))) stopifnot(all.equal(phiu, sqrt(sum(cphiu)))) stopifnot(all.equal(phin, sqrt(sum(cphin)))) stopifnot(all(c(amaorm, amaoru, amaorn) - 1 < 1e-10)) stopifnot(all.equal(maorm, exp(sqrt(sum(cmaorm))))) stopifnot(all.equal(maoru, exp(sqrt(sum(cmaoru))))) stopifnot(all.equal(maorn, exp(sqrt(sum(cmaorn))))) stopifnot(all.equal(maorm, smaorm)) stopifnot(all.equal(maoru, smaoru)) stopifnot(all.equal(maorn, smaorn)) # Test on perfectly anti-symmetric association hmm <- hmskew(ocg1973, nd.symm=0, weighting="marginal", start=NA) hmu <- hmskew(ocg1973, nd.symm=0, weighting="uniform", start=NA) hmn <- hmskew(ocg1973, nd.symm=0, weighting="none", start=NA) stopifnot(all.equal(fitted(hmm), fitted(hmu))) stopifnot(all.equal(fitted(hmm), fitted(hmn))) w <- (hmm$assoc$row.weights + hmm$assoc$col.weights)[,1]/2 phim <- maor(fitted(hmm), TRUE, weighting="marginal", norm=2, row.weights=w, col.weights=w) phiu <- maor(fitted(hmu), TRUE, weighting="uniform", norm=2) phin <- maor(fitted(hmn), TRUE, weighting="none", norm=2) sphim <- maor(fitted(hmm), TRUE, component="symmetric", weighting="marginal", norm=2, row.weights=w, col.weights=w) sphiu <- maor(fitted(hmu), TRUE, component="symmetric", weighting="uniform", norm=2) sphin <- maor(fitted(hmn), TRUE, component="symmetric", weighting="none", norm=2) aphim <- maor(fitted(hmm), TRUE, component="antisymmetric", weighting="marginal", norm=2, row.weights=w, col.weights=w) aphiu <- maor(fitted(hmu), TRUE, component="antisymmetric", weighting="uniform", norm=2) aphin <- maor(fitted(hmn), TRUE, component="antisymmetric", weighting="none", norm=2) cphim <- maor(fitted(hmm), TRUE, TRUE, weighting="marginal", norm=2, row.weights=w, col.weights=w) cphiu <- maor(fitted(hmu), TRUE, TRUE, weighting="uniform", norm=2) cphin <- maor(fitted(hmn), TRUE, TRUE, weighting="none", norm=2) maorm <- maor(fitted(hmm), weighting="marginal", norm=2, row.weights=w, col.weights=w) maoru <- maor(fitted(hmu), weighting="uniform", norm=2) maorn <- maor(fitted(hmn), weighting="none", norm=2) smaorm <- maor(fitted(hmm), component="symmetric", weighting="marginal", norm=2, row.weights=w, col.weights=w) smaoru <- maor(fitted(hmu), component="symmetric", weighting="uniform", norm=2) smaorn <- maor(fitted(hmn), component="symmetric", weighting="none", norm=2) amaorm <- maor(fitted(hmm), component="antisymmetric", weighting="marginal", norm=2, row.weights=w, col.weights=w) amaoru <- maor(fitted(hmu), component="antisymmetric", weighting="uniform", norm=2) amaorn <- maor(fitted(hmn), component="antisymmetric", weighting="none", norm=2) cmaorm <- maor(fitted(hmm), cell=TRUE, weighting="marginal", norm=2, row.weights=w, col.weights=w) cmaoru <- maor(fitted(hmu), cell=TRUE, weighting="uniform", norm=2) cmaorn <- maor(fitted(hmn), cell=TRUE, weighting="none", norm=2) stopifnot(all.equal(phim, aphim)) stopifnot(all.equal(phiu, aphiu)) stopifnot(all.equal(phin, aphin)) stopifnot(all.equal(phim, sqrt(sum((hmm$assoc$phi)^2)))) stopifnot(all.equal(phiu, sqrt(sum(abs(hmu$assoc$phi)^2)))) stopifnot(all.equal(phin, sqrt(sum(abs(hmn$assoc$phi)^2)))) stopifnot(all(c(sphim, sphiu, sphin) < 1e-10)) stopifnot(all.equal(phim, sqrt(sum(cphim)))) stopifnot(all.equal(phiu, sqrt(sum(cphiu)))) stopifnot(all.equal(phin, sqrt(sum(cphin)))) stopifnot(all(c(smaorm, smaoru, smaorn) - 1 < 1e-10)) stopifnot(all.equal(maorm, exp(sqrt(sum(cmaorm))))) stopifnot(all.equal(maoru, exp(sqrt(sum(cmaoru))))) stopifnot(all.equal(maorn, exp(sqrt(sum(cmaorn))))) stopifnot(all.equal(maorm, amaorm)) stopifnot(all.equal(maoru, amaoru)) stopifnot(all.equal(maorn, amaorn)) # Test on symmetric and anti-symmetric association # Without starting values, model too often converges to wrong solution start <- c(6.540, 0.106, 0.407, 0.666, 1.006, -0.581, -0.261, 0.060, -4.411, -0.567, -0.310, 0.264, 0.652, -1.794, -1.610, -1.627, -0.743, -0.012, 6.311, 0.295, 0.198, -0.015, -0.167, 0.010) hmm <- hmskew(ocg1973, nd.symm=1, weighting="marginal", start=start) hmu <- hmskew(ocg1973, nd.symm=1, weighting="uniform", start=start) hmn <- hmskew(ocg1973, nd.symm=1, weighting="none", start=start) stopifnot(all.equal(fitted(hmm), fitted(hmu))) stopifnot(all.equal(fitted(hmm), fitted(hmn))) w <- (hmm$assoc$row.weights + hmm$assoc$col.weights)[,1]/2 phim <- maor(fitted(hmm), TRUE, weighting="marginal", norm=2, row.weights=w, col.weights=w) phiu <- maor(fitted(hmu), TRUE, weighting="uniform", norm=2) phin <- maor(fitted(hmn), TRUE, weighting="none", norm=2) sphim <- maor(fitted(hmm), TRUE, component="symmetric", weighting="marginal", norm=2, row.weights=w, col.weights=w) sphiu <- maor(fitted(hmu), TRUE, component="symmetric", weighting="uniform", norm=2) sphin <- maor(fitted(hmn), TRUE, component="symmetric", weighting="none", norm=2) aphim <- maor(fitted(hmm), TRUE, component="antisymmetric", weighting="marginal", norm=2, row.weights=w, col.weights=w) aphiu <- maor(fitted(hmu), TRUE, component="antisymmetric", weighting="uniform", norm=2) aphin <- maor(fitted(hmn), TRUE, component="antisymmetric", weighting="none", norm=2) cphim <- maor(fitted(hmm), TRUE, TRUE, weighting="marginal", norm=2, row.weights=w, col.weights=w) cphiu <- maor(fitted(hmu), TRUE, TRUE, weighting="uniform", norm=2) cphin <- maor(fitted(hmn), TRUE, TRUE, weighting="none", norm=2) maorm <- maor(fitted(hmm), weighting="marginal", norm=2, row.weights=w, col.weights=w) maoru <- maor(fitted(hmu), weighting="uniform", norm=2) maorn <- maor(fitted(hmn), weighting="none", norm=2) smaorm <- maor(fitted(hmm), component="symmetric", weighting="marginal", norm=2, row.weights=w, col.weights=w) smaoru <- maor(fitted(hmu), component="symmetric", weighting="uniform", norm=2) smaorn <- maor(fitted(hmn), component="symmetric", weighting="none", norm=2) amaorm <- maor(fitted(hmm), component="antisymmetric", weighting="marginal", norm=2, row.weights=w, col.weights=w) amaoru <- maor(fitted(hmu), component="antisymmetric", weighting="uniform", norm=2) amaorn <- maor(fitted(hmn), component="antisymmetric", weighting="none", norm=2) cmaorm <- maor(fitted(hmm), cell=TRUE, weighting="marginal", norm=2, row.weights=w, col.weights=w) cmaoru <- maor(fitted(hmu), cell=TRUE, weighting="uniform", norm=2) cmaorn <- maor(fitted(hmn), cell=TRUE, weighting="none", norm=2) stopifnot(all.equal(phim, sqrt(sphim^2 + aphim^2))) stopifnot(all.equal(phiu, sqrt(sphiu^2 + aphiu^2))) stopifnot(all.equal(phin, sqrt(sphin^2 + aphin^2))) stopifnot(all.equal(sphim, sqrt(sum((hmm$assoc$phi)^2)))) stopifnot(all.equal(sphiu, sqrt(sum(abs(hmu$assoc$phi)^2)))) stopifnot(all.equal(sphin, sqrt(sum(abs(hmn$assoc$phi)^2)))) stopifnot(all.equal(aphim, sqrt(sum((hmm$assoc.hmskew$phi)^2)))) stopifnot(all.equal(aphiu, sqrt(sum(abs(hmu$assoc.hmskew$phi)^2)))) stopifnot(all.equal(aphin, sqrt(sum(abs(hmn$assoc.hmskew$phi)^2)))) stopifnot(all.equal(phim, sqrt(sum(cphim)))) stopifnot(all.equal(phiu, sqrt(sum(cphiu)))) stopifnot(all.equal(phin, sqrt(sum(cphin)))) stopifnot(all.equal(maorm, exp(sqrt(sum(cmaorm))))) stopifnot(all.equal(maoru, exp(sqrt(sum(cmaoru))))) stopifnot(all.equal(maorn, exp(sqrt(sum(cmaorn))))) # Test for phi computed from UNIDIFF two-way interaction coefficients data(yaish) tab <- aperm(yaish[,,-7], 3:1) # 1-norm # Currently disabled until supported correctly # u1m <- unidiff(tab, weighting="marginal", norm=1) # rp <- prop.table(margin.table(tab, 1)) # cp <- prop.table(margin.table(tab, 2)) # stopifnot(all.equal(u1m$unidiff$phi, # maor(fitted(u1m)[,,1], TRUE, weighting="marginal", norm=1, rp, cp))) # stopifnot(all.equal(u1m$unidiff$phi, # maor(fitted(u1m)[,,1], TRUE, weighting="marginal", norm=1, rp, cp))) # # u1u <- unidiff(tab, weighting="uniform", norm=1) # stopifnot(all.equal(u1u$unidiff$phi, # maor(fitted(u1u)[,,1], TRUE, weighting="uniform", norm=1))) # stopifnot(all.equal(u1u$unidiff$phi * exp(u1u$unidiff$layer$qvframe$estimate[2]), # maor(fitted(u1u)[,,2], TRUE, weighting="uniform", norm=1))) # # u1n <- unidiff(tab, weighting="none", norm=1) # stopifnot(all.equal(u1n$unidiff$phi, # maor(fitted(u1n)[,,1], TRUE, weighting="none", norm=1))) # stopifnot(all.equal(u1n$unidiff$phi * exp(u1u$unidiff$layer$qvframe$estimate[2]), # maor(fitted(u1n)[,,2], TRUE, weighting="none", norm=1))) # 2-norm u2m <- unidiff(tab, weighting="marginal", norm=2) stopifnot(all.equal(u2m$unidiff$phi, maor(fitted(u2m), TRUE, weighting="marginal", norm=2), check.attributes=FALSE)) stopifnot(all.equal(u2m$unidiff$phi[1] * exp(u2m$unidiff$layer$qvframe$estimate), maor(fitted(u2m), TRUE, weighting="marginal", norm=2), check.attributes=FALSE)) u2u <- unidiff(tab, weighting="uniform", norm=2) stopifnot(all.equal(u2u$unidiff$phi, maor(fitted(u2u), TRUE, weighting="uniform", norm=2), check.attributes=FALSE)) stopifnot(all.equal(u2u$unidiff$phi[1] * exp(u2u$unidiff$layer$qvframe$estimate), maor(fitted(u2u), TRUE, weighting="uniform", norm=2), check.attributes=FALSE)) u2n <- unidiff(tab, weighting="none", norm=2) stopifnot(all.equal(u2n$unidiff$phi, maor(fitted(u2n), TRUE, weighting="none", norm=2), check.attributes=FALSE)) stopifnot(all.equal(u2n$unidiff$phi[1] * exp(u2n$unidiff$layer$qvframe$estimate), maor(fitted(u2n), TRUE, weighting="none", norm=2), check.attributes=FALSE)) stopifnot(all.equal(maor(yaish), apply(yaish, 3, maor, row.weights=margin.table(yaish, 1), col.weights=margin.table(yaish, 2)))) ### ## Comparison with mean/sum of all spanning odds ratios ### # Can be set to arbitrary values nr <- 4 nc <- 5 norm <- 2 or <- function(tab) { or1 <- function(i, j, i2, j2) (tab[i, j] * tab[i2, j2]) / (tab[i, j2] * tab[i2, j]) or <- array(NA, c(nrow(tab), ncol(tab), nrow(tab), ncol(tab))) for(i in 1:nrow(tab)) for(j in 1:ncol(tab)) for(i2 in 1:nrow(tab)) for(j2 in 1:ncol(tab)) if(i2 != i && j2 != j) or[i, j, i2, j2] <- or1(i, j, i2, j2) or } wlor2 <- function(tab) { rp <- prop.table(margin.table(tab, 1)) * nrow(tab) cp <- prop.table(margin.table(tab, 2)) * ncol(tab) wlor2 <- w <- array(NA, c(nrow(tab), ncol(tab), nrow(tab), ncol(tab))) for(i in 1:nrow(tab)) for(j in 1:ncol(tab)) for(i2 in 1:nrow(tab)) for(j2 in 1:ncol(tab)) if(i2 != i && j2 != j) { wlor2[i, j, i2, j2] <- log((tab[i, j] * tab[i2, j2]) / (tab[i, j2] * tab[i2, j]))^norm w[i, j, i2, j2] <- rp[i] * cp[j] * rp[i2] * cp[j2] } wlor2 * w / sum(w, na.rm=TRUE) } ## Unweighted mean # General case res <- replicate(10, { tab <- matrix(rpois(nr*nc, 1000), nr, nc) + .5 rp <- rep(1/nr, nr) cp <- rep(1/nc, nc) c(maor(tab, weighting="uniform", norm=norm), maor(tab, norm=norm, row.weights=rp, col.weights=cp), exp(mean(abs(log(or(tab)))^norm, na.rm=TRUE)^(1/norm))) }) stopifnot(all.equal(res[1,], res[2,])) stopifnot(all.equal(res[1,], res[3,])) # 2x2 table (equality with single odds ratio) res <- replicate(10, { tab <- matrix(rpois(2*2, 1000), 2, 2) + .5 rp <- cp <- rep(1/2, 2) c(maor(tab, weighting="uniform", norm=norm), maor(tab, norm=norm, row.weights=rp, col.weights=cp), exp(sqrt(log(tab[1,1] * tab[2,2] / (tab[1,2] * tab[2,1]))^2))) }) stopifnot(all.equal(res[1,], res[2,])) stopifnot(all.equal(res[1,], res[3,])) ## Unweighted sum # General case res <- replicate(10, { tab <- matrix(rpois(nr*nc, 1000), nr, nc) + .5 rp <- rep(1, nr) cp <- rep(1, nc) c(maor(tab, weighting="none", norm=norm), exp(sum(abs(log(or(tab)))^norm, na.rm=TRUE)^(1/norm))) }) stopifnot(all.equal(res[1,], res[2,])) # 2x2 table (equality with single odds ratio) res <- replicate(10, { tab <- matrix(rpois(2*2, 1000), 2, 2) + .5 rp <- cp <- rep(1, 2) c(maor(tab, weighting="none", norm=norm), exp(sqrt(4 * log(tab[1,1] * tab[2,2] / (tab[1,2] * tab[2,1]))^2))) }) stopifnot(all.equal(res[1,], res[2,])) ## Marginal-weighted mean # General case res <- replicate(10, { tab <- matrix(rpois(nr*nc, 100), nr, nc) +.5 rp <- prop.table(margin.table(tab, 1)) cp <- prop.table(margin.table(tab, 2)) c(maor(tab, weighting="marginal", norm=norm), maor(tab, norm=norm, row.weights=rp, col.weights=cp), exp(abs(sum(wlor2(tab), na.rm=TRUE))^(1/norm))) }) stopifnot(all.equal(res[1,], res[2,])) stopifnot(all.equal(res[1,], res[3,])) # 2x2 table (equality with single odds ratio) res <- replicate(10, { tab <- matrix(rpois(2*2, 100), 2, 2) + .5 rp <- prop.table(margin.table(tab, 1)) cp <- prop.table(margin.table(tab, 2)) c(maor(tab, weighting="marginal", norm=norm), maor(tab, norm=norm, row.weights=rp, col.weights=cp), exp(abs(log(tab[1,1] * tab[2,2] / (tab[1,2] * tab[2,1]))))) }) stopifnot(all.equal(res[1,], res[2,])) stopifnot(all.equal(res[1,], res[3,])) res <- replicate(10000, { tab <- matrix(rpois(15, 100), 3, 5) c(log(tab[1,1])+log(tab[2,2])-log(tab[1,2])-log(tab[2,1]), tab[1,1]) })